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Abstract

We propose a novel variational inference method for deep Gaussian processes
(GPs), which combines doubly stochastic variational inference with variational
Fourier features, an inter-domain approach that replaces inducing points-based in-
ference with a framework that harnesses RKHS Fourier features. First experiments
have shown that inter-domain deep Gaussian processes are able to achieve levels of
predictive performance superior to shallow GPs and alternative deep GP models.

1 Introduction

Gaussian process (GP) methods are powerful tools for function approximation. They are non-
parametric probabilistic models and as such they are flexible, robust to overfitting, and provide
well-calibrated predictive uncertainty estimates [1]. Deep Gaussian processes (DGPs) are multi-layer
hierarchical generalizations of GPs and promise to overcome the limitations of traditional GPs without
compromising their advantages [14].

Under certain conditions, a GP can be viewed as a neural network with a single infinite-dimensional
layer of hidden units [13], and deep GPs have been argued to be a type of infinitely-wide, deep neural
network [6]. In fact, it was shown that a deep neural network with arbitrary depth and non-linearities,
with dropout applied before every weight layer, is mathematically equivalent to an approximation
to a deep GP [7]. Deep GPs hence offer a promising framework that allows us to combine deep
architectures with a principled, Bayesian approach to obtaining predictive uncertainties.

We propose a novel variational inference procedure that combines the approaches presented in [14]
and [9], making it the first inter-domain inference method for deep GPs. We leverage the many
desirable properties of doubly stochastic variational inference (DSVI) for deep GPs and augment the
inference procedure by replacing the standard inducing points methodology with an inter-domain
approach that allows us to transform the space of inducing variables and capture more information
about the underlying process.

2 Background

Deep GPs were first developed in [4] and have since been extended to improve their stability and
scalability [1, 2, 3, 6, 10, 14]. Deep GPs are compositions of GPs in which the output of the previous
layer is used as the input to the next layer. Similar to deep neural networks, the hidden layers of a deep
GP learn representations of the input data, but in contrast to neural networks, they allow uncertainty
to be propagated through the hierarchy and learn the hidden layer representations variationally.

Let X = [xy,...,xx] ' denote the N x P-dimensional training data, and let y denote the N x D-
dimensional noisy observations of the response variable. Formally, to describe a deep GP, we consider
a nested structure of the form

y =FU pe = fL(fE71 (L F(X)).) + e, (1)
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where L is the number of layers, F® = X, and each F* = fZ(F[ 1) in the composition F* s a

draw from the /th-layer GP, obtained by pointwise evaluation of f* at F‘~!. We follow the notation
in [14] and absorb the noise between layers which is assumed to be i.i.d. Gaussian, into the kernel
s0 that kpoisy(Xi, X;) = k(x;,%;) + 0] 6m, where d;; is the Kronecker delta and 012 is the noise
variance between layers.

2.1 Doubly stochastic variational inference for deep Gaussian processes

Our approach closely follows the inference procedure in [14], which diverges from earlier inference
methods for deep GPs in that it does not assume independence or Gaussianity between layers. It
maintains the correlations between layers and has the same non-linear structure as the full model,

making it analytically intractable. Figure 1a shows a graphical representation of the model structure.
Let Z™' = [2071, ..., 25, "] be the matrix of M x P‘~! inducing inputs and U* = [uf, ..., u,]"
be the M x Pz-d1men51onal matrix of inducing variables with U = f (Ze 1). Define the covariance
function as Ky = k(V, W) with [k(V,W)];; = k(v;, w;) for any input matrices V, W. To
perform stochastic variational inference in a deep GP model, [14] propose a variational posterior
with three properties: first, conditioned on U, the variational posterior maintains the exact model
q(F*, U") = p(F"| U")q(U"); second, the posterior distribution of {U*}%_, factorizes across layers
(and dimensions), which implies that the variational posterior takes the form

L
=q({H", U"},) = [ p(F* | U, F*"1)q(U"); )
£=1
and third, assume q(UZ ) is Gaussian with mean p‘ and variance X¢. These properties allow us to
marginalize ¢(U*) from Q and get

L L
q{F ) = [[a@® |pf, 247 = T[NV @ R, 8", 3)
=1 =1
where
=m(F") = my — Kpee K (0° — mye), (4)
S*=S(F', F") = Kerpr — Keee K2, (Kyewe — SOK Kyepr, (5)

with mean functions mge = m(F*~!) and my. = m(Z°~"). Since, within each layer, the marginals
only depend on the corresponding inputs, the nth marginal of the final layer of the variational deep
GP posterior can be expressed as

L-1
g(FL) = / TT off [, 55, £, ®)
=1

where f fl is the nth row of F*. This quantity is easy to compute using the reparameterization trick,
which lets us sample from the nth instances of the variational posteriors across layers by defining

#o—miE Yyl oV/sE e (7)

and sampling from € ~ N(0,1p.) [11, 14]. Moreover, the reparameterization trick allows us to
compute unbiased gradients of the marginal likelihood bound with respect to the variational and
model parameters.

2.2 Variational Fourier features

The central idea behind using Fourier features in an inducing points-based variational inference
framework is that they let us generalize the conventional inducing-inputs approach by allowing a
different decomposition of the underlying process. This can be achieved by replacing the inducing
variables u,,, = f(z,,) with the projection

/ J(x)g(x,8m) (®)
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(a) Graphical model representation of a deep GP model (b) Graphical model representation of a deep GP model
with inducing inputs, inducing variables, and two hid- with sparse Fourier feature inducing variables and two
den layers, F* and F?, forn = 1,..., N. hidden layers, F! and F?, forn =1, ..., N.

Figure 1: Graphical representation of conventional inducing-points deep GPs and inter-domain deep GPs.

where x € R and u,,, € RP. The feature extraction function 9(X, 8, ) used in the integral defines
the transformed domain in which the inducing dataset lies. The inducing variables obtained this way
can be seen as projections of the target function f(x) on the feature extraction function over the entire
input space [12]. As such, each of the inducing variables contains information about the behavior of
f(x) everywhere on the input space and thus becomes more informative about the posterior [9, 12].

The usefulness of inducing variables mostly relies on their covariance with the remainder of the
process, which, for inducing points-based variational inference, is encoded in the vector-valued
function ky, (x) = [k(z1, %), k(22,X), ..., k(zrr, X)]. Kuu and ky, (x) are central to inducing points-
based variational inference for GPs, which is exemplified by the use of K¢ye and K ege in m(F*)

and S(FZ7 FZ) in DSVI for deep GPs described above. Variational Fourier features, in contrast, are
based on a variational inference procedure that uses Reproducing Kernel Hilbert Space (RKHS)
theory to construct inter-domain alternatives to K, and k,(x) by projecting f onto the truncated
Fourier basis,

o(z) = [1,cos(wi(z — a)), ..., cos(wps (x — a)), sin(w, (z — a)), ...,sin(war (z — a))] ", (9)

where z is a single, one-dimensional input, and the mth frequency w,, is defined as w.,,, = %TZ for

some interval [a, b]. More specifically, for an RKHS H, the coordinate of the projection of a function
h € H onto ¢, (x) is given by

Ps., (h) = (h, dm)n (10)

and defines a projection between domains. It has been shown that if 7 is a Matérn RKHS of functions
over [a, b], then the span of ¢ belongs to #, which ensures that the inner product between h and ¢, is
defined [5, 9]. With these results, we can construct the inducing variables by defining u,, = Py, (f),
which yields

oV (U, f(z)) = dm(x), (11)
COV(umaum’) = <¢m7¢)m’>7-l7 (12)
for both of which there are closed-form expressions for the half-integer members of the Matérn family
of kernels. The resulting operators k% (z) = ¢(x) and K%,, = K g, where K is the Gram Matrix

of ¢ in H, represent generalized, inter-domain alternatives to the k,, (x) and K, operators used in
conventional inducing-points approaches.

There are several ways to apply this RKHS Fourier feature approach to multidimensional inputs [9].
In this work, we used additive kernels, which, for shallow GP models, are defined by

P
fx) = Z fo(2p), fo ~ GP(0, kp(xpvx;)))7 13)
p=1

where z,, is the pth component of x and k,, (-, -) is a kernel defined on a scalar input space.



3 Inter-domain deep Gaussian processes

In inter-domain deep GPs, we marry the two previously introduced approaches. In DSVI for deep GPs,
integrating out the hidden variables is straightforward due to the functional form of ¢(f ﬁ ) and the use
of the reparameterization trick. This property allows us to use the inter-domain operators K ., in
the likelihood expectation without having to analytically convolve Kif ¢¢ With the distributions of the
hidden variables, which would have been necessary in previous deep GP inference methods.

Our approach constructs the variational posterior through sinusoidals by using the inter-domain

operators introduced in the previous section to compute m‘ and S¢ (see Figure 1b). For RKHS
Fourier feature-based inducing variables, the deep GP’s joint density is then

N L
p(Y? {FK’ Uz}tg:l) = H p(yn| f{:) Hp(FZ ‘ Uev Feilv {(“J’m}i\n/{zl)p([ﬂZ |{wm}'£\r{=1)' (14)
n=1 =1

All model properties of the inducing points-based DSVI presented in [14] are being preserved in this
inter-domain framework.

To optimize inter-domain deep GPs, we maximize the expected lower bound (ELBO) on the marginal
likelihood log(y) given by

L

N
L="Ey ) [logp(yal £1)] = Y KL(g(U)[|p(U")),
/=1

15)

n=1

which resembles the standard DSVI marginal likelihood, but, unlike in [14], the expectation is taken
over the variational distribution ¢(f fj ) constructed from the inter-domain operators.

3.1 Experiment with large-scale, non-stationary data

We tested the performance of our
model on the U.S. flight delay predic-
tion example, a large-scale regression
problem that has reached a status
of a standard test in GP regression
due to its massive size of 5,929,413
observations (P = &) and its non-
stationary nature, both of which are
challenging for GPs [9]. We found
that a 2-layer inter-domain deep GP
model was able to achieve levels of
predictive performance superior to
state-of-the-art shallow and deep GP
models, including DSVI for deep GPs
and variational Fourier features (see
Table 1).

4 Conclusion

Table 1: Predictive MSEs with one standard error for U.S. flight
delay prediction. Standard errors were computed by taking ten
pseudo-random subsamples from the data, splitting them into
training and test data, and using the same subsample splits for
each model. Models: DSVI for deep GPs [14], Approximate Ex-
pectation Propagation for deep GPs (AEP DGP) [1], Stochastic
Variational Inference for GPs (SVGP) [8], Variational Fourier
Features for GPs (VFF) [9]. NA: computationally too expensive
or, in the case of AEP DGP, computationally infeasible.

1 denotes that MSEs were obtained from [9].

N 10,000 1,000,000 5,929,413
DSVIDGP (2L) 0.893 £0.16 0.847 £0.01 0.83£ NA
AEP DGP 0.933 £0.17 0.963 +0.05 NA
SVGPT 0.900 £0.14 0.830+£0.01 0.837+ NA
VFF 0.892+0.15 0.823 £0.01 0.826+ NA

this work (2L) 0.869 £+ 0.15 0.809 - 0.01 0.810+ NA

Deep GPs show a lot of promise, and recent advances have demonstrated their strong performance on
challenging problems [2, 14]. Inter-domain deep GPs show great experimental potential and offer
exciting avenues for future research in Bayesian deep learning.
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