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Abstract

Modeling complex conditional distributions is useful in a variety of settings. How-
ever, conditional density estimation (CDE) is challenging, in large part due to
fundamental trade-offs between modeling distributional complexity, functional
complexity and avoiding overfitting. We present a Bayesian method for CDE which
uses normalizing flows to model complex predictive distributions and variational
Bayesian neural networks to capture their changes throughout the space without
overfitting. We validate our method on several small benchmark regression datasets
on some of which we obtain state of the art performance. We demonstrate the
scalability of this approach on a spatial density modeling task with over 1 million
datapoints using the New York City yellow taxi dataset. On this task, our model
provides constant time evaluation of fine-grained conditional probability densities.

1 Introduction
Modeling complex noise distributions is useful in a variety of settings. For example, in reinforcement
learning, we often want to model action value functions for risky decisions for which rewards are
inherently bimodal, or state transition dynamics which may vary significantly from Gaussian [4].
In financial modeling, properly handling heavy tailed distributions may be crucial. Additionally, in
spatial density modeling, we find extremely non-Gaussian distributions over locations of people and
events in space.

Let D = {xi, yi}Ni=1 be a dataset of observations (xi ∈ X, yi ∈ Y ) sampled i.i.d. from some joint
distribution p(x, y). Conditional density estimation (CDE) refers to the problem of approximating
the conditional, p(y|x,D). In particular, parametric methods for CDE propose a class of densities to
describe this conditional, {p, ω ∈ Ω}, and a class of functions, h, indexed by θ ∈ Θ, and use D to
find a function, hθ : X → Ω, xi 7→ ωi, which is used to approximate p(yi|xi) as p(yi|ωi = hθ(xi)).

Methods for CDE are defined entirely by choices of Ω, Θ and an inference procedure, which
prescribes an objective and a learning algorithm which dictate how to choose θ. For example, linear
regression models define a linear mapping from x and θ to ω, where ω defines an exponential family
likelihood. Ordinary least squares additionally specifies that p(y|ω) is Gaussian, and defines a
maximum likelihood objective with an analytic form to find θ. Neural network classifiers use θ to
define a neural network and ω to be the softmax-transformed output defining a categorical distribution
over labels, such that p(y|ω = hθ(x)) = Cat(y|ω).

While much work on CDE has been done, it remains a challenging problem in its general formulation,
particularly when one wants to maintain the ability to model complex distributions without overfitting
to small datasets. This motivates our development of a novel Bayesian method for CDE which
obviates the limitations of previous methods. In this work, we propose to use a normalising flow to
define conditional densities, p(yi|ωi = hθ(xi)), where the parameters, ωi are the output of a neural
network hθ. To avoid overfitting, we perform variational inference(VI) over the parameters of the
neural network, θ.
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The organization of this paper is as follows. In section 2 we present a method for applying normalizing
flows to conditional density estimation [22]. Next, in section 3, we apply our method to several small
benchmark regression tasks on which we achieve state of the art performance. We then demonstrate
the scalability of our method in section 4 by applying it to a spatial density estimation task using the
New York City yellow taxi dataset.

2 Bayesian Normalizing Flows for Conditional Density Estimation
A normalizing flow is a mapping between probability densities defined by a differentiable, monotonic
bijection between the spaces in which they live [20]. These transformations are composable, and a
series of relatively simple invertible transformations can be used define more complex transformations.
[20] introduced two families of parametric transformations, and showed that a series of these
transformations could warp a standard Gaussian base distribution into rich approximate posteriors. In
particular, by mapping random variable z0 through a K-stage normalizing flow, f = (f1, f2, . . . , fK)
we define a transformed variable, zk and its density as:

zK = fK ◦ · · · ◦ f2 ◦ f1(z0) and ln p(zK) = ln p(z0)−
K∑
k=1

ln
dfk(zk−1)

dzk−1
(1)

Where p(z0) is defined to be a standard normal base distribution and each fk is a simple transformation
which has a closed form with an easy to calculate derivative. In particular, we will consider ‘radial
flows’ [20].

As this formulation of normalizing flows was developed for Monte Carlo variational inference, it is
optimized for efficiently drawing samples and calculating likelihoods and is not particularly suitable
to conditional density estimation. First, the utility of this class of transformations to conditional
density estimation is limited by the inefficiency of evaluating the likelihood of externally provided
data, which requires inverting each fk [19]. We overcome this limitation by reversing the direction of
the normalizing flows, defining the forward mapping from the target, y to the base distribution:

y0 = f1 ◦ f2 . . . fK(y) and ln p(y) = ln p(y0) +

K∑
k=1

ln
dfk(yk)

dyk
(2)

Where fK : y 7→ yk−1 and each other fk : yk 7→ yk−1, and p(y0) is defined to be a standard normal
base distribution over y0. In the conditional setting, the parameters defining each fk is an output
of hθ(xi), thereby yielding a different conditional distribution for each xi. This inversion of the
direction of parameterization is necessary for the application of a large class of normalizing flows to
density estimation as it allows the density of data to be evaluated trivially.

A second challenge as we move from the application of normalizing flows to amortized inference to
CDE is the ease of overfitting. When fitting approximate posteriors with these methods to minimize
a variational objective, an implicit entropy penalty favors broad distributions. In contrast, naive
approaches to CDE such as maximum likelihood estimation are prone to overfitting given flexible
models[2].

The Bayesian framework provides a compelling approach for avoiding overfitting by modeling
parameter uncertainty. However, the effective use of Bayesian methods requires reasonable priors,
and it is not immediately obvious how to define parameters over normalizing flows. In this vein, we
developed a alternative parameterization of radial flows [20] for which we found it easier to express
priors over the characteristics of distributions, such as the extent of multimodality and the even-ness
of tails(Appendix A, Figure 3).

Crucially, this intuitive parameterization additionally allows us to begin reasoning about placing
priors over how conditional distributions change as a function of x. One appealing way to accomplish
this is by placing a Gaussian process prior over h, the function defining the parameters of normalizing
flows across the space and choosing a covariance function which reflects our prior beliefs(e.g. about
the extent of heteroscedasticity)(Figure 4, Appendix B).

Exact posterior inference with a Gaussian process prior is far from tractable in such a model, however.
As such we turn to two approximations which allow us to take this intuition and build an expressive
and tractable class of estimators. First we appeal to the equivalence established by [17] between
infinitely wide Bayesian neural networks and Gaussian processes, and approximate an infinite network
with a finite one. Second, because exact posterior inference in even finite networks is intractable, we
resort to variational inference[9] in this Gaussian process approximation. Specifically, we use mean
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Figure 1: Comparison of performance of flexible Bayesian methods for conditional density estimation
on six small UCI datasets across 20 train/test splits (Mean±1SEM). Higher is better.

field variational inference with fixed posterior variances over weights [25, 11]. Priors over weights
and biases implicitly define the covariance function of the approximate Gaussian process and are kept
as hyperparameters of the model, to be chosen in a problem dependent manner based upon either
prior knowledge or a model selection scheme such as Bayesian optimization or cross-validation. In
this way, we have turned prior beliefs about the extent of non-Gaussianity and heteroscedasticity
into hyperparameters of our model. Figure 4 demonstrates this capacity by visualizing a conditional
density estimator sampled with different prior parameters.

2.1 Related Work

A number of methods exist for performing CDE in its full generality which, in the limit of very large
models and datasets, are able to capture arbitrary conditional distributions. These include mixtures
models[8, 1], conditional variants of implicit generative models [21, 15] and autoregressive models
[6, 16, 24]. Additionally, two Bayesian methods for CDE have been proposed recently; [18] performs
stochastic variational inference in a mixture density network for an application to approximately
Bayesian computation and [4, 5] use stochastic inputs to a Bayesian neural network for an application
to reinforcement learning.

3 Results on Benchmark Datasets
We evaluated our normalizing flow model (NF) on six benchmark UCI regression datasets, comparing
against two alternative Bayesian methods for CDE which can approximate arbitrarily complex
conditional distributions in the limit of large models; mixture density networks (MDN) and neural
networks with latent variable inputs (LV). We use Bayesian implementations of mixture density
networks and neural networks with input noise following [18] and [4], respectively (details in
Appendix C). For each of these three models, we tested two levels of complexity of the predictive
distributions (i.e. number of warpings, mixing components and noise samples, respectively), which we
judged to be roughly equivalent. We additionally compare to two variational Bayesian neural networks
models with homoscedastic Gaussian likelihoods. These are two different mean-field approximations,
one with learned variances (MF) and one with fixed variances (WN)1. Hyperparameters of all methods
were optimized on held out validation sets using Bayesian optimization. Overall we see the best
performance by the more expressive normalizing model, NF-5 (Figure 1). The normalizing flow
based models outperform the Bayesian neural network models with Gaussian likelihoods on every
dataset except for energy, on which performance is similar. Additionally, they yield state of the art

1We refer to this model as weight noise (WN) due to its equivalence to this model. This model has been
referred to as fast dropout [25] and Gaussian dropout[11].
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Figure 2: Heatmaps representing learned conditional densities of yellow cab pickups for different
fares and tip amounts. Rides with no tip are most frequent in touristy areas and around Wall Street.
Heat density is in units of p(lat,long)dlat dlong and is capped at 1000. Best viewed in color.

performance on two of these datasets, ‘yacht’ and ‘wine’ [7, 3, 13, 14]. We note that this state of the
art performance is with a neural network model consisting of a single hidden layer of 50 hidden units
and expect that wider and deeper models will provide even further improvements.

MDNs perform poorly on most datasets as compared to the other methods. The exception is the Wine
quality prediction dataset, on which MDN-5 had far superior performance (Figure 1). Upon closer
inspection into these results, we found that the labels for this benchmark regression task are ordinal
ratings on a 1 to 10 scale, and the MDN was able to fit a Gaussian with very small variance to one
of these ratings. As a result, we conclude that performance on this dataset is a weak indicator of
performance on continuous distributions.

4 Conditional Spatial Density Estimation on NYC Yellow Taxi Dataset
Spatial density estimation is the problem of predicting distributions over where events occur in
space. To demonstrate the scalability of our method we applied it to a spatial density modeling task
using a subset of the NYC yellow taxi dataset consisting of records from more than 1 million trips2.
Specifically we performed mean field VI in model predicting a distribution over the pickup locations
based on the fare, percent tip, and time of day. Applying our method to this task required two changes
from the simpler instance described in the previous section. First, in order to model a 2D distribution
over location, we used an autoregressive structure to model the conditional as a product of two 1D
densities[12, 23]:

p(y|x, θ) = p(y1|ω = hθ1(x))p(y2|ω = hθ2(x, y1))

2We use data made publicly available www.nyc.gov/html/tlc. We used the data from January of 2016, as
it provided an interesting proof of principle and scaling up to the entire dataset would have posed challenges
outside the scope of this work.
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Where hθ1 and hθ2 are both variational Bayesian neural networks.

Second, to accommodate the complexity of the conditional distributions and precisely capture subtle
changes with time of day, fare amount and percent tip, for each of the conditionals we used a larger
network, consisting of 2 layers of 200 hidden units and a 20−stage normalizing flow. Additional
details are included in Appendix D.

This approach allows us to derive insights about taxi pickups in Manhattan. For example, we observe
interesting trends by looking at the conditional densities for different tip and fare amounts (Figure 2).
For $5 fares, we see an increased density in the upper East side, a wealthy, primarily residential area.
This density is notably larger for trips with 20% tips than rides with no tip. Rides with no recorded
tip with $5 or $10 fares, are most highly concentrated in midtown around Times Square and along
5th avenue, which are particularly touristy areas of the city. For $20 fares, density is higher around
Wall Street, with notably higher density for trips with no tip than with a 20% tip.

5 Conclusion
We presented a Bayesian method for conditional density estimation using normalizing flows. By
providing a framework for specifying priors over conditional distributions and performing approx-
imate posterior inference using variational Bayesian neural networks, we achieved state of the art
performance on two small benchmark datasets. We demonstrated the scalability of our method on the
New York City yellow taxi dataset, on which our method is able to predict fine-grained predictive
distributions.
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A An Alternative Parameterization of Radial Flows

If we are to reason about placing priors over distributions parameterized by normalizing flows, we are
best served by using a parameterization which is more naturally interpretable. As such, we developed
an alternative parameterization of the family of radial flows described by [20] for which we found it
easier to reason about priors. In particular, we defined a new parameterization as:

f(z) = z +
αβ(z − z0)

α+ |z − z0|
(3)

Where the parameters are {β, z0 ∈ IR, α ∈ IR+}.
We can gain intuition into how this function shapes a probability density by examining its gradient:

df(z)

dz
= 1 +

d

dz

αβ(z − z0)

α+ |z − z0|

= 1 +
(α+ |z − z0|) ddz (αβ(z − z0))− αβ(z − z0) ddz (α+ |z − z0|)

(α+ |z − z0|)2

= 1 +
α2β + αβ|z − z0| − αβ|z − z0|

(α+ |z − z0|)2

= 1 +
α2β

(α+ |z − z0|)2

(4)

Looking closely at f and its derivative, we see that the warping varies from the identity to the greatest
extent when z = z0, where f ′(z0) = 1 + β. For values of z far from z0, the gradient asymptotes to
unity, which reflects no local perturbation (i.e. two inputs close to each-other but far from z0 will
be moved very little relative to one another). Additionally, we see that β < 0 leads a log-gradient
which is positive, and therefore a compression of the density (we see this in equation 2). When
β = 0, f is the identity, and does not warp the base density, and β < 0 leads a log-gradient which is
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negative, and therefore a thinning of density. Furthermore, when β = −1, limz→z0 f
′(z) = 0 and

limz→z0 lnp(z0) = −∞. Finally, when β < −1, f is no longer monotonic, and equation 2 no longer
reflects the probability distribution.

Accordingly, to ensure strict monotonicity we restrict β > −1. We accomplish this by parameterizing
β as β = exp(β̂) − 1. A number of possible parameterizations exist which could be used, but we
prefer this for two reasons. First, in contrast to the original parameterization in [20], β is independent
of second shape parameter, α. Second the magnitude of the of untransformed representation, β̂, is
equal to the maximum magnitude of the log derivative of the function it parameterizes. As a result,
priors we place on β̂ are priors on the maximum change in log density induced by the warping:

ln
df

dz
(z0) = ln

(
1 + β

)
= β̂ (5)

The second shape parameter, α, has an interpretable role in the warping as well. Examining equations
3 and 4, we see that α controls how quickly df

dz decays back to 1 as z moves away from z0. As such,
large values of α lead to longer range distortions of the base distribution that shift points relative to
one another to a greater extent. In this formulation, two points could be shifted by at most 2α|β|
relative to one another; away from one another for β > 0, and towards one another for β < 0. As α
approaches 0, the perturbation defined by the warping occurs more quickly and produces a smaller
distortion, with f collapsing to the identity function when α = 0.

As with β, we have a constraint on α which we must satisfy to maintain monotonicity, α > 0.
We impose this by parameterizing α as a softplus transformed unconstrained parameter, α =
ln(exp(α̂) + 1), where α̂ is an unconstrained real number. As such, priors on α should reflect our
beliefs about the length scales at which the parameterized distribution will depart from the base
distribution. These properties make it easier to reason about the relationship between the priors we
place on parameters of the radial flows and the probability densities they define.

B Placing Priors on Conditional Density Estimators

We have discussed some of the challenges associated with building expressive models for conditional
density estimation which do not overfit to training data and in Appendix A we introduced a parameter-
ization of normalizing flows which can reflect assumptions about the distributions they will represent.
This provides the foundation for a probabilistic framework for CDE with normalizing flows. In this
section, we delve deeper into how one can place priors over distributions and conditional density
estimators with normalizing flows.

B.1 Placing Priors over Probability Distributions

How much do we expect the target distribution to deviate from non-Gaussianity, and in what ways?
In the context of normalizing flows, this is determined by the parametric family used, and how the
parameters are set. When we use a neural network to parameterize these, our initialization and
regularization scheme implicitly places a prior of these distributions, so we should be concerned with
how these implicit priors manifest themselves in the resultant distributions.

We can get better sense of how the priors we place over the parameters of normalizing flows relate to
the resultant probability densities by plotting sampled densities for Gaussian priors with different
means and variances. For example, the densities in figure 3 represent a single set of sampled
parameters of a density defined by a Gaussian base distribution passed through 10 radial flows for
different prior means and variances. We can smoothly interpolate between different priors for single
sample using the reparameterization trick. Looking at how the distributions change for different
settings of the prior provides intuition into the kinds of distributions which have higher density under
different priors.

B.2 Placing Priors over Conditional Density Estimators

Just as in the context of function approximation, where our ability to reason about the values functions
take on at unseen points arises from assumptions about its the continuity and smoothness, if we
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Figure 3: A manifold representing a probability densities sampled from different priors over a
10-stage normalizing flow. The same random seed is used to interpolate between different choices
of priors to demonstrate the impact of different choices of priors on the resultant distribution. The
variance in maximum magnitudes of the distortions are controlled by σβ̂ , which varies across the
densities within each subplot. The sharpness of the distortions is controlled by µα̂, which varies
from sharpest to smoothest across the columns. The variance of the sharpness of the distortions
is controlled by σα̂, and is increased in successive rows. The remaining parameters are fixed at
σβ̂ = 1.0, µz = 0.0 and µβ̂ = 0.0. Best viewed in color.

are to generalize in our predictions about conditional distributions we will need to make similar
assumptions. For function approximation, this assumption often takes the form of assuming that
inputs which are ‘similar’ to one another will take on ‘similar’ values.

xi ≈ xj =⇒ yi ≈ yj
A notion of similarity of inputs is crucial to making reasonable inferences about a function. When
we choose a model class, we are defining what it means for an xi and xj to be close to one another,
whether consciously or unconsciously, be it through the choice of a covariance function in a Gaussian
process or the architecture of a deep neural network. For example, the widths, strides and dimensions
of convolutions in a neural network for image classification enable us define the kinds of spatial
translations under which images may be shifted and remain similar to one another.

In CDE, this is no longer the case; this property will not hold for heavy tailed or bimodal conditional
distributions, for example. Instead, we build off the assumption that for ‘similar’ observed variables,
the corresponding conditional distributions will be ‘similar’ to one another:

xi ≈ xj =⇒ p(y|xi) ≈ p(y|xj)
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Figure 4: The characteristics of conditional density estimators sampled from different priors vary
with the prior parameters. Each panel is a heatmap depicting the conditional density estimator defined
by an MLP mapping to the parameters of a 5-stage normalizing flow. The same random seed for
each sample, and the reparameterization trick is used to interpolate between different Gaussian priors.
Moving left to right, we increase the prior standard deviation over the parameter β, which controls
the magnitude of the warping. Moving top to bottom, we increase the value of the parameter λ, which
controls the extent of heteroscedasticity (with larger values reflecting greater heteroscedasticity). Best
viewed in color.

This assumption in CDE, clearly begs the additional question, “what does it mean for distributions to
be ‘similar’? ”. We should ideally choice a definition of similarity which reflects our understanding
of the problem we are solving.

For example, in estimating the location of taxis in NYC conditioned on time of day, we expect
to see significant shifts in which areas of the city have greatest density, but we might expect that
centers of density will generally exist in the same places (e.g. around major train stations and highly
populated areas) and never in others (e.g. rivers). In contrast, if we are considering the probability of
a worker’s wage conditioned on the year, we might expect some characteristics of this distribution
to be conserved across yeas (e.g. heavy upper tails or sharp peaks at minimum wages) but we also
expect global translations of this distribution as a result of slowly varying trends, such as inflation,
changing minimum wage or economic growth. Our priors about how p(y|x) changes as x changes
should inform how we define this notion of distance between distributions and infer a conditional
density estimator.

Perhaps the easiest way to implement a notion of closeness of conditional distributions is in parameter
space. By placing a prior on θ that reflects a belief that hθ is smooth and slowly varying, we encode a
belief that the conditional distributions change slowly throughout the space as well. This is implicitly
done in previous work on CDE, however, the relationship between the closeness of parameters and
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conditional distributions is perhaps less obvious for normalizing flows than it is for other distributions,
such as mixture models or exponential family distributions.

This observation that neural network models with normalizing flows use a notion of similarity tied to
distance in parameter space sheds additional light on the importance of choice of parameterization.
For our parameterization of normalizing flows in equation 3, distance in parameter space has an
intuitive interpretation when considering distance in the space of distributions. We can understand
this by looking back at parameterization the radial flow and its gradient in equation 4. By placing
priors how quickly the untransformed parameter β̂ change throughout the input domain, we are
directly placing priors on how quickly the maximum expansion or contraction of the base distribution,
in terms of log probability density, induced by each stage of the normalizing flow will change. Priors
how α̂ and z vary in turn act as priors on how the sharpness and center points of the distortions will
vary. Tuning our of priors on the variances of these parameters relative to one another translates
directly into priors over the kinds of shifts in the conditional distributions which we believe best
explain data we see.

One can get a sense of the kinds of beliefs different priors express about conditional density estimators
by considering samples from these priors, as illustrated in Figure 4. By placing different priors on on
how each parameter of the function changes, we adjust a definition of distributional similarity. For
the class of models described in this paper, the hyper-parameters define the magnitude of changes in
parameters of the normalizing flows.

B.3 Homoscedasticity vs Heteroscedasticity

Perhaps the clearest motivation for defining a notion of distributional similarity through specification
of priors is the trade-off between modeling complexity of conditional distributions and the complexity
of their changes throughout the input space.

Especially when working with small datasets, prior beliefs about the noise distribution and how it
varies across the input space heavily shape the posterior predictive distributions. Models for CDE
are often split into homoscedastic and heteroscedastic models, where homoscedastic models have a
stationary noise distribution and heteroscedastic models have varying noise distributions throughout
the input space. However, as we discussed earlier, the tractability of any model for CDE hinges on
the assumption that the noise distribution cannot change too quickly. We acknowledge that this is a
fundamental trade-off and demonstrate how to smoothly interpolate between homoscedastic and very
heteroscedastic models.

If we choose to parameterize hθ as an MLP, we can smoothly interpolate between homoscedastic
and heteroscedastic models by adapting our prior on the weights mapping from the final layer to the
parameters of the normalizing flows, we do this with the parameter λ, which defines a multiplicative
scaling of the final layer weights (but not biases). When these weights are small, the conditional
distributions will vary only slightly away from their biases. The resulting functions have the same
length scale for changes in noise structure, but the magnitude of the deviations are tuned by these final
layer weights. Figure 4 demonstrates how larger values of λ give rise to greater heteroscedasticity.

Similarly, the length scales of the changes in the noise distribution (the weights/bias ratio in the first
layer [17]) tunes the kind noise structure with high density under the prior. In the models we explored
in this paper, we use the same MLP to predict the all characteristics of the conditionals, though we
note that this expresses strong beliefs about the length scales of the changes in characteristics of these
distributions being similar, which may or may not be a good assumption.

C Comparisons

For all models, we defined hθ as an MLP with a single hidden layer of 50 units with tanh activations.
We optimize with Adam [10] with hyper parameters β1 = 0.9 and β2 = 0.99 and learning rate 0.005
and ran our batch optimization for 5000 iterations. In all models, we use the local reparameterization
trick [11] and calculate the DKL(q||p) and its gradient analytically. For all models during both
training and testing, used 20 MC samples of weights and biases.
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C.1 Mixture density networks

We follow [18] in using stochastic VI to implement a Bayesian mixture density network (MDN). We
use a diagonal Gaussian approximate posterior over weights and biases. We test two models, one
with 2 mixing components (MDN-2) and a second with 5 mixing components(MDN-5).

Breaking from previous implementations of MDNs, we parameterized the model likelihood with an
additional offset parameter, s, such that ω = ∪Cc=1{µc, σc, λc} ∪ {s}:

p(y|ω) =

C∑
c=1

λcN (y|µc + s, σ2
c )

where we enforce
∑C
i=1 λc = 1 by defining λ = Softmax(λ̂), and enforce σc > 0 by defining σc =

softplus(σ̂c), where λ̂ and σ̂ are unconstrained outputs of the neural network. This parameterization
is redundant in two ways, first, the global shift given by s could equivalently be encoded by shifts in
the means each of the mixing components and second, λ is a C-dimensional simplex variable with
only C − 1 degrees of freedom. We prefer this parameterization of the component means because,
in the context of our variational neural network approximation, it does not penalize global shifts
distributions according to the complexity of these distributions (as would be the case otherwise). As
such, a complex but homoscedastic noise distribution may be more easily represented.

We placed zero-mean Gaussian priors on the weights and biases. In previous work [22], we found
that the mean field approximations were often quite sensitive to the prior standard deviation, so
optimized this hyperparameter using Bayesian optimization. We initialized the standard deviations of
the approximate posteriors to be very small (σinit = 10−5).

C.2 Normalizing Flows

We used a diagonal Gaussian variational approximation with fixed weight variances as this model
performed well in the model assuming homoscedastic, Gaussian observations. We tested two
normalizing flow based conditional density estimators with different levels of complexity, one with
two radial warpings (NF-2) and one with five radial warpings (NF-5). We chose these models to have
similar expressive power and the same number of parameters as the two mixture density network
models, MDN-2 and MDN-5. We performed hyperparameter optimization on three of the models’
hyper parameters, σβ̂ , λ and the posterior variances of the weights and biases σw.

C.3 Neural Networks with Latent Variables

The third conditional density estimator which we tested is a neural network with latent variable
inputs. We fit this model by mean field variational inference, following the implementation used by
[4]. We tested two models, one in which we calculated likelihoods using 5 samples of noise(LV-5)
and one calculating likelihoods with 15 samples (LV-15). We make this choice attempting to pick
models with roughly the same expressive power as the corresponding normalizing flow and MDN
models, however, given the marked difference between the approaches, an objective comparison of
expressive power is not possible. As with the Bayesian MDN’s, we initialized the standard deviations
of the approximate posteriors to be 10−5 and selected the prior standard deviation using Bayesian
optimization.

Unlike [4], we use tanh activation units. Previous work used ReLU hidden units which, when using
input noise sampled from a uniform distribution, results in densities which are piece-wise linear. As
such, learning such, we find learning distributions with small ReLU networks in this way to be very
difficult as compared to similar networks with smooth activation functions.

This approach is more difficult to scale up in a stochastic variational Bayesian framework, where we
are forced to use Monte Carlo samples over model parameters as well as the inherent stochasticity.
Similarly, evaluating the density under the posterior predictive distribution requires multiple samples
for both weights of the network and the input noise.
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Table 1: Mean log-likelihood in nats for normalizing flows, mixture density networks and neural
networks with latent inputs on six small UCI benchmark regression dataset. Higher is better.

Dataset N D MDN-2 MDN-5 LV-15 LV-5 NF-2 NF-5
boston 506 13 -2.65±0.03 -2.73±0.04 -2.64±0.05 -2.56±0.05 -2.40±0.06 -2.37±0.04
concrete 1030 8 -3.23±0.03 -3.28±0.03 -3.06±0.03 -3.08±0.02 -3.03±0.05 -2.97±0.03
energy 768 8 -1.60±0.04 -1.63±0.06 -0.74±0.03 -0.79±0.02 -0.44±0.04 -0.67±0.15
power 9568 4 -2.73±0.01 -2.70±0.01 -2.81±0.01 -2.82±0.01 -2.73±0.01 -2.68±0.01
wine 1588 11 -0.91±0.04 1.43±0.07 -0.98±0.02 -0.96±0.01 -0.87±0.02 -0.76±0.10
yacht 308 6 -2.70±0.05 -2.54±0.10 -1.01±0.04 -1.15±0.05 -0.30±0.04 -0.21±0.09

p(y|x,D, α, η) =

∫
θ

p(θ|D, α, η)

∫
z

p(z|η)p(y|x, z, θ)dzdθ ≈ 1

M

M∑
i=1

1

K

K∑
j=1

p(y|x, zj , θi) (6)

where each θi ∼ p(θ|D, α, η) and each zj ∼ p(z|η)

We report the mean and standard error of performance on held-out datasets in table 1.

D Spatial Conditional Density Estimation Experimental Details

As our observed variables, we consider pickup time, number of passengers, fare amount, and
percent tip. We presented time of day as an input to the model, parameterizing with two variables
as
(
sin( 2π·hour

24 ), cos( 2π·hour
24 )

)
. This parameterization of time is preferable in that it ensures that

similar times are close in input space (e.g. 11:59pm is close to 12:00am, which is not the case for a
one dimensional parameterization of time).

All input features and labels are normalized to have zero-mean a unit variance. We performed
variational inference using the local reparameterization trick. We used a learning rate of 2 · 10−5, and
ran for 1500 epochs with batch size of 2048 on a NVIDIA Tesla K80 GPU. For hyper-parameters,
we set µα̂ = 1 and σα̂ = 0.1, λ = 1,µβ̂ = 0 and σβ̂ = 1, µz = 0 and σz = 1, and the prior over
weights to be unit Gaussian. We fixed the posterior uncertainties in weights and biases to 10−5.
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