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1 Introduction

Neural autoregressive models are explicit density estimators that achieve state-of-the-art likelihoods
for generative modeling [3, 4, 5, 7]. The D-dimensional data distribution p(x) is factorized into an
autoregressive product of one-dimensional conditional distributions according to the chain rule. Each
conditional distribution is parametrized by a shared neural network.

Data completion is a more involved task than data generation: the model must infer missing variables
for any partially observed input vector. Previous work [5] introduced an order-agnostic training
procedure for data completion with autoregressive models. It maximizes the average likelihood of
the model over all D! orderings of the data dimensions. As a result, all possible one-dimensional
conditionals p(xod |xo1 , ..., xod−1

) are trained, for any d ∈ {1..D} and any ordering o of {1...n}.
Thus, missing variables in any partially observed input vector can be imputed efficiently by choosing
an ordering where observed dimensions precede unobserved ones and by computing the autoregressive
product in this order. This training procedure can be made efficient: [6] estimates the order-agnostic
loss with an unbiased estimator that reuses most computations.

In this paper, we provide evidence that the order-agnostic (OA) training procedure is suboptimal for
data completion. We propose an alternative procedure (OA++) that reaches better performance in
fewer computations. It can handle all data completion queries while training fewer one-dimensional
conditional distributions than the OA procedure. In addition, these one-dimensional conditional
distributions are trained proportionally to their expected usage at inference time, reducing overfitting.
Finally, our OA++ procedure can exploit prior knowledge about the distribution of inference comple-
tion queries, as opposed to OA. We support these claims with quantitative experiments on standard
datasets used to evaluate autoregressive generative models.

2 Improving the order-agnostic loss for data completion

The OA procedure trains autoregressive models for data completion by optimizing the loss IOA(θ)
in Equation 1. In practice, the exact loss has too many terms to be computationally tractable. It is
estimated by sampling a training vector x uniformly at random, a number d ∈ {1..D} and a set o<d

of conditioned variables uniformly at random, and by computing ÎOA(θ) as in Equation 2. The sum
in ÎOA(θ) is computed over all possible choices of od, and the neural network computations involved
in p(xod |xo<d; θ, od) can be reused across the terms of the sum.

IOA(θ) = Ex∈XEo∈D! − log p(x; θ, o) = Ex∈XEo∈D! −
D∑

d=1

log p(xod |xo<d; θ, o) (1)

≈ ÎOA(θ) =
D

D − d+ 1

∑
od

− log p(xod |xo<d; θ, o<d, od) (2)
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In this section, we present and motivate step-by-step the modifications we propose to the OA
procedure (Equation 1), leading to the OA++ procedure (Equation 5).

2.1 Equal use of 1D conditional distributions at training and inference

Ideally, the usage of each 1D conditional distribution at inference time should be proportional to its
usage at training time. Otherwise, some 1D conditional distributions frequently used at inference time
might be under-trained (undermining performance), and some 1D conditional distributions rarely
used at inference time might be over-trained (undermining efficiency). For d ∈ {1..D}, we refer
to 1D conditional distributions with d− 1 conditioned variables, p(xod |xo<d; θ), as 1D conditional
distributions of size d.

Result: Under the OA procedure, at any training iteration, each 1D conditional distribution of size d
has a fixed probability 1

( D
d−1)(D−d+1)

of being trained.

Proof : At any training iteration, exactly one 1D conditional distribution of size d is trained. It is
chosen uniformly at random among the

(
D

d−1
)
(D − d+ 1) 1D conditional distributions of size d.

Result: Under the OA procedure, each 1D conditional distribution of size d has probability
1

( D
d−1)(D−d+1)

of being involved in any generation query.

Proof : Exactly one 1D conditional distribution of size d is involved in any generation query, as each
of the D variables must be sampled in sequence. There are

(
D

d−1
)
(D − d + 1) such distributions.

The OA procedure chooses a variable ordering uniformly at random. Thus, any 1D conditional
distribution of size d has an equal probability 1

( D
d−1)(D−d+1)

of being used in any generation query.

Therefore, under the OA procedure, the expected usage of any 1D conditional distribution at inference
time is proportional to its expected usage at training time for generation queries. We are interested in
data completion queries, however. In a completion query, the values of some variables are known,
and thus conditional distributions for those variables do not need to be computed. This changes the
expected usage patterns for each size d of conditional distribution. Using the OA procedure leads
to a discrepancy between the usage of 1D conditional distributions during training and inference.
Further, if we know something in advance about the distribution of inference queries (e.g. which
variables will be known, or how many will be known), the OA procedure has no way to exploit such
prior knowledge.

The OA++ procedure we propose does not suffer from these limitations. It assumes that inference
queries follow a distribution D , and it trains all 1D conditional distributions proportionally to
their expected usage during inference under this distribution. If we have prior knowledge about
the expected structure of inference queries, this can be encoded in D . If we have no such prior
knowledge, then OA++ sets D to be a uniform distribution over inference queries, i.e. the set of
observed variables in a completion query is drawn uniformly at random.

Instead of optimizing log p(x; θ, o) over all D! orderings of {1..n} as in the OA procedure, OA++
samples obs ⊂ {1..D} from the expected distribution of inference queries D , it samples an ordering
o of the unobserved input xmissing uniform at random, and it optimizes log p(xmissing|xobs; θ, o). Since
missing ∪ obs = {1..D}, there are (D − |obs|)! possible orderings o of the unobserved input. The
corresponding loss is expressed in Equation 3:

Ex∈XEobs∼DEo∈(D−|obs|)! − log p(xmissing|xobs; θ, o) (3)

2.2 Training fewer 1D conditional distributions

The OA procedure maximizes the average log-likelihood of the model over all orderings: in Equation
1, the ordering o is treated as a uniform random variable over its D! values. Consequently, all 1D
conditional distributions are trained. However, these conditional distributions will not all be used. To
handle any given query, the model must either fix an order of the unobserved variables, or use an
ensemble of K > 1 orderings of the unobserved variables as in [5]. In most settings, K << D!, thus
far fewer 1D conditionals will be used than were trained. Since the parameters of all conditionals are
determined by a single shared neural network, the model is wasting its representational capacity on
1D conditionals that will not be used at inference time.
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Model Adult DNA Mushrooms NIPS-0-12 Connect4 OCR-letters RCV1 Web

OA 9.8 / 13.6 87.2 / 90.7 5.2 / 9.5 277.0 / 280.7 9.4 / 14.7 31.7 37.8 47.0 / 48.1 28.8 / 30.1

OA++ 7.8 / 11.9 78.2 / 83.3 4.2 / 7.8 272.0 / 276.4 4.7 / 9.5 23.0 / 27.7 46.0 / 47.2 27.9 / 29.1

Table 1: Average negative log-likelihood of NADE models on 2 test sets of inference queries. In each
cell, the left metric corresponds to uniform random queries, the right metric corresponds to random
queries of size D/2 known in advance

The OA++ procedure we propose instead trains at most K
∑D

d=1

(
D

d−1
)

conditional distributions,

much fewer than the total number
∑D

d=1

(
D

d−1
)
(D − d+ 1) of 1D conditional distributions, and it

can still handle any completion query by using an ensemble of K orderings. To do so, we fix in
advance K orderings OK = {o1, ..., oK} of {1..D}. For any completion query xobs, an ordering o
is sampled uniform at random from OK . The autoregressive sum is computed over the unobserved
input xmissing (data dimensions are ordered according to o). Fundamentally, OA++ treats the ordering
o as a uniform random variable over K values, instead of D! values for OA.

The OA++ loss IOA++(θ) for data completion is expressed as in Equation 5. D is the distribution of
inference queries if we have prior knowledge of it; otherwise D is the uniform random distribution of
completion queries. K is the maximum number of inference queries that we expect to average by
ensembling at inference time. For a given completion query obs ∈ D , the D− |obs| data dimensions
of xmissing are reordered according to ordering o.

IOA++(θ) = Ex∈XEo∈OK
Eobs∼D − log p(xmissing|xobs; θ, o) (4)

= Ex∈XEo∈OK
Eobs∼D

D−|obs|∑
d=1

− log p(xmissing
d |xobs, xmissing

<d ; θ, o) (5)

Unbiased Estimator The OA++ loss in 5 has a large number of terms. It can be estimated by
sampling a training example x uniformly at random, a completion query obs ∼ D , a number
d ∈ {1..D − |obs|}, and by computing ÎOA++(θ) as in Equation 6.

ÎOA++(θ) = −(D − |obs|) log p(xmissing
d |xobs, xmissing

<d ; θ, o) (6)

It is possible to provide an unbiased estimator of the loss, that consists of a sum with computations
shared among its different terms, like in Equation 2. However, under the assumption K << D!, the
sum would likely consist of a single term, effectively reducing to Equation 6.

Unifying data generation and data completion
By choosing K = 1, OA++ reduces to the original training procedure for NADEs introduced in [2].
By choosing K = D!, OA++ reduces to the order-agnostic training procedure for data generation
introduced in [6]. In other words, OA++ unifies the training procedures of data generation and data
completion under a single framework.

3 Results

In order to compare OA and OA++, we train the same autoregressive model (two-layer NADE) with
both procedures. We conduct experiments on eight multivariate binary datasets commonly used by
previous works on autoregressive models [1, 2, 5]. Table 1 reports the performance of all models
on 2 test sets of inference queries: one consists of uniform random completion queries; the other
consists of completion queries of size D/2 picked at random. On the second test set, models were
provided prior knowledge of the distribution of inference queries. Results are computed for K = 1
(no ensemble learning). The comparison of OA and OA++ for K > 1 is left as future work.

Performance at convergence OA++ outperforms OA on all experiments and does especially well
when given prior knowledge about the distribution of inference queries.

Speed of convergence OA++ converges in fewer computations than OA. OA++ also does not suffer
from overfitting, while OA sometimes does. Figure 1 reports the evolution of the training and
validation log-likelihoods with the number of computations, for some experiments.
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Figure 1: Evolution of the train and validation loglikelihoods with the number of computations.
Computations are reported as the number of neural network inferences performed, divided by the
dimensionality D of the data. From left to right and from top to bottom: Mushrooms, Adult, Connect4,
OCRletters.
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