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Abstract

The true Bayesian posterior of a model such as a neural network may be highly
multimodal. In principle, normalizing flows can represent such a distribution via
compositions of invertible transformations of random noise. In practice, however,
existing normalizing flows may fail to capture most of the modes of a distribu-
tion. We argue that the conditionally affine structure of the transformations used
in [Dinh et al., 2014, 2016, Kingma et al., 2016] is inefficient, and show that
flows which instead use (conditional) invertible non-linear transformations natu-
rally enable multimodality in their output distributions. With just two layers of
our proposed deep sigmoidal flow, we are able to model complicated 2d energy
functions with much higher fidelity than six layers of deep affine flows.

1 Introduction

Normalizing flows [Rezende and Mohamed, 2015] apply a series of parametrized invertible transfor-
mations which reshape the probability distribution of their inputs. Due to computational concerns,
the authors limit the flows to a scalar bottleneck which allows the use of the matrix determinant
lemma. Dinh et al. [2014, 2016], Kingma et al. [2016] instead choose to manipulate the order of
conditioning, which also allows for linear time computation of the determinant of jacobian.

In contrast, we note that a flow can be formed via any (arbitrarily conditioned) invertible mapping,
and propose a non-linear deep sigmoidal flow. The transformations in deep sigmoidal flows re-
semble neural networks with parameter constraints which ensure they are monotonic in their inputs.
Such transformations can represent the inverse CDF of a density function if the base distribution is
chosen to be uniform, hence resembling the inverse transform sampling method. But conventionally
we consider using standard normal as base distribution ! and transform and random noise sampled
from it. While composing affine flows allows for modeling of multi-modal distributions, sigmoidal
flows allow for a much more natural expression of multi-modality.

As suggested in [Huang et al., 2017], sigmoidal flows are potential universal approximators for any
multivariate density function. This property could be used to establish the asymptotic unbiasedness
of deep latent Gaussian models such as Variational Autoencoders [Kingma and Welling, 2013]. It
also suggests that sigmoidal flows could provide a better model of the posterior over model param-
eters in Bayesian treatments of deep neural networks [Krueger et al., 2017].

2 Deep Sigmoidal Flow

We now describe a single transformation (of a single input variable, x;) by a deep sigmoidal flow,
which resembles a deep neural network with 2L layers. Carrying forward the analogy, the “pa-

"We also tried multimodal base distribution and pass it through the inverse autoregressive transformation
with affine functions but did not find it to be better.
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Figure 1: Tllustration of invertible mapping’s effect on normal distribution (left). If the source normal distri-
bution is passed through an affine map (top center), the output distribution remains a normal distribution (top
right). When a deep sigmoidal flow (bottom center) is used, multiple modes can be introduced (bottom right).

rameters” of this network, (a’, b', w!, ml)lel, are all produced as a function of the preceding input
variables 1, ..., z;_1. Defining h° = x;, we have

Cl

h' = Logit(} " w'o(a' - h'= + b'%)) + m! (1)
k=1

where 0 < wh < 1, >, wh =1, a¥ > 02, Logit(¢) = log 1%5, 2 = hy, and ¢t controls the

number of modes conditioned on the preceding input variables. Since a'/ and w" are both positive,
h! is a composition of monotonic functions (including ) and is therefor monotonic as function of
h!=1 (and hence invertible). Returning to the deep network description of this transformation, we
can view the computation of h' as composing projected onto a layer of ¢/ sigmoid units (represent-
ing different localized contractions, which push down probability mass as depicted in Figure 1),
followed by an inner product with w!, yielding a CDF for a mixture of logistic distributions. Finally,
this CDF is “inverted” into a bijection from [0, 1] to R via the Logit operation.

Efficient training. Having defined an invertible transformation, we can use the change of variables
formula to compute the density of the transformed variable (') in terms of the original variable’s
density, as typically done with normalizing flows: p,/ (z') = pm(x)\det%—grl. Assume we are
given an energy function that we seek to model U(z) : RP — R, and that our objective is the
exclusive KL-divergence. Then estimation of the loss function can be carried out through the Law
of Unconscious Statistician and Monte Carlo Sampling:

a !
KL(por ||U) = Eyp,_, [log par (') — log U(z")] = E,, [log po () — log |det£| —logU(z")] (2

Comparison to Mixture Proposals. Interestingly, differentiating the input to the Logit function
wr.t. x; in (1) yields the pdf of a mixture of logistic distributions. This can be interpreted as
parameterizing the CDF of the mixture density function using a deep neural network to fit the in-
verse integral of any density function. Intuitively, a mixture proposal with a sufficient number of
components can asymptotically approximate any target density, but in practice one needs to either
marginalize out all the components (which is expensive) or sample from a specific mode and update

2Constraints on the variables are enforced via activation functions; w" and a¥ are outputs of a softmax
and softplus, respectively.



its sufficient parameters independently (which introduces a lot of variance). Our method, on the
other hand, uses a neural network to define a flexible monotone function and updates the parameters
through efficient Monte Carlo sampling to carve up the correct density function.

Comparison to Affine Transformations. Unlike the affine transformation constructions used in
NICE and IAF, Equation 1 creates “humps” through superpositions of sigmoid functions at dif-
ferent locations. Multimodality can easily be introduced through such a transformation, as shown
by Figure 1. It is important to note that through compositions of transformations (suppose we are
considering multivariate models and ordering of conditioning is different for each transformation to
allow all dimensions to influence each other), conditional affine flows can potentially introduce mul-
timodality. Empirically, we found that it relies heavily on initialization and tuning the optimizer, and
still does not always capture multiple modes. Using the non-affine flow allows us to capture multiple
modes more easily, even without needing to tune the hyperparameters of optimization carefully.

3 Experiments

3.1 Fitting Multimodal Energy Functions

We visualize the ability of sigmoidal flows to fit complicated energy functions, including those used
by Rezende and Mohamed [2015]. We find that sigmoidal, but not affine, flows are able to capture
multi-modality, and sigmoidal flows perform better overall, both qualitatively and quantitatively. We
set ¢; = 1 in all experiments, which is essentially equivalent to a one-layer MLP with constraints on
weights.
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Figure 2: Comparison of affine flows with deep sigmoidal flows (DSF) on four synthetic energy functions
(rows). With just 2 layers of transformations, the DSF already captures the energy functions with much higher
fidelity than 6 layers of NICE affine flow transformations. The right column shows KL-divergence learning
curves. The DSF generally learns somewhat faster and ultimately outperforms the affine flows in terms of
KL-divergence in three out of four cases.
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Figure 3: Deep Sigmoidal Flows as approximate posterior of Bayesian DNNs. We show the mean statistic and
half standard deviation of the posterior predictive mean. Red crosses are training examples.

3.2 1-D Regression

We follow the Bayesian Hypernetworks [Krueger et al., 2017] and demonstrate using DSF allows
us to capture the posterior over the weight parameters of a neural net. For these experiments, we
choose ReLLU as nonlinear activation. We use one hidden layer of MLP with 64 hidden nodes.
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