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Abstract

Although Bayesian deep learning (BDL) combines the power of deep learning and
Bayesian inference, its high computational cost makes it difficult to apply to large-
scale data. We address this challenge by introducing an asynchronous variance
reduced distributed framework, based on Stein Variance Gradient Descent (SVGD),
for large-scale BDL training. The key advantage of our framework, termed as
AVR-SVGD, is that multiple solutions introduced by SVGD can be significantly
different from each other, leading to a greater degree of asynchronousness among
solutions and consequentially more efficient computing in optimization. We further
apply variance reduction technique to improve the convergence. Empirical studies
show the effectiveness of AVR-SVGD.

1 Introduction

Bayesian deep learning was proposed to combine the power of deep learning and Bayesian inference.
It has been successfully applied to multiple important problems such as click-through-rate estimation
and image classification. We refer to [15] and references therein for a comprehensive survey. Despite
the promising results, the high computational cost of BDL makes it difficult to apply for large datasets.
Most existing works for BDL are based on either sampling approaches or approximate inference
methods [15, 11, 13]. The conventional sampling methods, such as Markov Chain Monte Carlo
(MCMC)[1, 2], are usually slow in convergence, and do not scale well to large datasets [9, 16].
Approximate inference methods, variational inference [6, 5] and expectation propagation [10], often
have to introduce extra assumptions on latent variables, significantly limiting its applications.

In this work, we focus on developing a distributed framework for BDL. Although multiple distributed
computing frameworks have been successfully developed for various machine learning models [17, 7,
3, 4], only few studies were devoted to BDL. [12] introduces a distributed computing framework,
based on expectation propagation, for Bayesian learning. Its assumption of exponential family and
usage of a centralized server, unfortunately, makes the method not preferred in practice. It is well
recognized that, with increasing amount of data, asynchronousness is the key to effectively leverage
the power of computer clusters. To this end, we propose and develop an asynchronous variance
reduced framework, based on Stein variational gradient descent (SVGD) [8, 14], for efficient BDL.
The key advantage of our framework, termed as AVR-SVGD, is that multiple solutions introduced by
SVGD can be significantly different from each other, leading to a greater degree of asynchronousness
among solutions and consequentially better convergence in optimization. This is in contrast to most
distributed optimization frameworks where to ensure appropriate convergence, certain degree of
consistency among different copies of solutions has to be maintained, significantly limiting the
improvement in computation. In addition, we introduce variance reduction technique to further
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improve the computational efficiency. The effectiveness of our method is validated from experiments
with real data.

2 An Asynchronous Variance Reduced SVGD

We first introduce the Stein variational gradient descent (SVGD) method for Bayesian deep learning.
We then present our asynchronous variance reduced framework for distributed BDL, based on SVGD.
We finally describe the technique of variance reduction within our framework.

2.1 Stein Variational Gradient Descent (SVGD) for Bayesian Deep Learning

The SVGD framework was first proposed in [8, 14] for variational inference. It differs from the
conventional Bayesian learning approaches in that it explicitly introduces multiple different solutions
to approximate the posterior distributions. These solutions are efficiently updated by explicitly
minimizing the Kullback-Leibler (KL) divergence in a reproduced kernel Hilbert space. More
specifically, let M be the number of solutions, or particles as called from the original work, and let
(·, ·) be the kernel function. At each iteration t, we denote by x

t

i

, i 2 [M ] the current particles. To
effectively minimize the KL divergence, each particle is updated as followed:
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Our key observation of SVGD is that the multiple solutions xt

i

, i 2 [M ] maintained by SVGD can be
very different from each other. This is in contrast to typical framework of distributed optimization
that requires strong degree of consistency among different copies of solutions in order to ensure
the convergence of optimization. It is the property that allows us to introduce a large degree of
asynchronousness among solutions, which become the basis of our distributed framework for BDL.
We should note that early works of SVGD focused on algorithmic development, and did not examine
its properties in distributed computing.

2.2 An Asynchronous Variance Reduced SVGD

In the synchronous implementation of SVGD, each particle has to wait for the arrival of ALL other
particles before it can be updated, making it computationally less attractive. We address this problem
by introducing an asynchronous framework for SVGD. More specifically, for each particle x

t

i

, we
will randomly select k < M particles, and calculate the gradient of xt

i

as long as the solutions for the
selected particles are ready, i.e.
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where Z(x
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), ensuring the correctness of our method. By
requesting each particle to listen to only a small subset of particles, we could greatly reduce the
waiting time of each particle, leading to significant improvement in efficiency. We note that it is
the fact that all the particles share different solutions that leads to unbiased estimation of gradients
and consequentially more efficient computing. In practice, we simply let each particle to wait for
the solutions of the first k arriving particles, which seems to work quite well despite its violation of
unbiased estimation of gradients.

Besides the asynchronous framework for SVGD, we also introduce variation reduction technique into
the framework to further improve the computational efficiency. The key idea is to let each particle be
updated by different batches of data that are randomly chosen. More specifically, at each time t, we
select M batches of training data for updating, denoted by Dt

= (D
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in (1), it will be computed based on data batch D
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m

. By having each particle computes its gradient over
its own data batch, we allow a larger degree of asynchronousness for our framework, leading to even
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higher computational efficiency. In addition, this approach introduce additional benefits of variance
reduction. Let �⇤

(x;D) denote by the gradient where all the particles use the same data batch D ,and
�

⇤
(x;D) be the gradient where different particles use different random data batches. It is relatively

straightforward to show that under appropriate conditions, VAR(�

⇤
(x;D)) � VAR(�

⇤
(x;D).

We summarize the key steps of the proposed AVR-SVGD framework in Algorithm 1. By allowing
each particle to be updated as long as the selected messages arrive, we are able to greatly relax
the synchronous requirement. By introducing different data batches for computing the gradients of
different particles, we reduce the variance in estimating the gradients, and therefore accelerate the
optimization process.

Algorithm 1 The Asynchronous Variance Reduced SVGD

In any particle x with index i, i 2 (1, 2, . . .M), the learning rate is ✏
For all t 2 {1, 2, . . . , T}, with training data Dt
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Step 4: Update: xt+1
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End for

3 Experiments

We demonstrate our method AVR-SVGD on the ImageNet 2012 Dataset. For fast experiment, we
first extract features from the outputs of the convolution layer of a ResNet-18. We compare our AVR-
SVGD with SVGD. In AVR-SVGD, we select three scenarios k/M = {0.4, 0.7, 1} for illustration.
The number of particles is set to 20 in all methods. The size of data batch for each particle is set to
be 16, thus the total batch size for each iteration is 320 in AVR-SVGD. The validation losses of all
methods are plotted in Figure 1. We first see that when AVR-SVGD significantly outperforms SVGD
when k/M = 1, indicating that our variance reduction technique works well. We then observe a
further improvement in optimization when k/M = 0.7, implying that our asynchronous scheme
gives additional boost in optimization performance. We also compare the accuracy of AVR-SVGD
with that of SVGD, and the results are shown in Table 1. We find that AVR-SVGD performs slightly
better than SVGD. Therefore, AVR- SVGD is able to not only accelerate the training process, but
also deliver a strong prediction power. Moreover, the accuracy of the DNN model (non-bayesian
SGD trained model) is also listed in Table 1. We can clearly see that the AVR-SVGD outperforms the
DNN model under all k/M scenarios, indicating that AVR-SVGD is more effective in learning deep
models than DNN.

Figure 1: Validation Loss

Method k/M Top 1 Accu Top 5 Accu
DNN None 66.6% 87.4%

SVGD None 67.1% 87.8%
AVR-SVGD 1 67.5% 88.1%
AVR-SVGD 0.7 67.5% 88.0%
AVR-SVGD 0.4 67.3% 87.8%

Table 1: Prediction Accuracy

4 Conclusion

In this paper, we propose an efficient AVR-SVGD framework for BDL. This framework fully leverage
the advantage of SVGD and introduces appropriate asynchronous mechanism and variance reduction
mechanism into the updating equations of SVGD, making it significantly more efficient compared
to the synchronous implementation. The efficiency of our training framework is proved from real
data experiments. Currently, we are investigating the efficiency of our framework for E-commence
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data from Alibaba that is comprised of millions of unbalanced records. We are also considering to
deliver the end-to-end deep network training for AVR-SVGD, instead of utilizing the dense feature
from a ResNet-18 in the ImageNet experiment. The last but not the least, we will further compare
AVR-SVGD and other ensemble models to show the benefit by applying the Bayesian mechanism.
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