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1 Introduction

Despite recent advances in few-shot learning, notably in meta-learning based approaches [Ravi and
Larochelle, [2017| |Vinyals et al., 2016} [Edwards and Storkey|, 2017, |[Finn et al.l 2017, [Lacoste et al.}
2018]], there remains a lack of general purpose methods for flexible, data-efficient learning. This paper
introduces VERSA, a system for data efficient and versatile meta-learning. It employs a flexible and
versatile amortization network that takes few-shot learning datasets as inputs, with arbitrary numbers
of shots, and outputs a distribution over task-specific parameters in a single forward pass. VERSA
substitutes optimization at test time with forward passes through inference networks, amortizing the
cost of inference and relieving the need for second derivatives during training. We evaluate VERSA
on benchmark datasets where the method achieves state-of-the-art results, handles arbitrary numbers
of shots, and for classification, arbitrary numbers of classes at train and test time. The power of the
approach is then demonstrated through a challenging few-shot ShapeNet view reconstruction task.

2 Meta-Learning Probabilistic Inference For Prediction

We now present the framework that consists of (i) a multi-task probabilistic model, and (ii) a method
for meta-learning probabilistic inference.

2.1 Probabilistic Model

Two principles guide the choice of model. First, the use of discriminative models to maximize
predictive performance on supervised learning tasks [Ng and Jordan| 2002]. Second, the need to
leverage shared statistical structure between tasks (i.e. multi-task learning). These criteria are met
by the standard multi-task directed graphical model shown in Fig. [I]that employs shared parameters
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Figure 1: Directed graphical model for multi-task learning.
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Let X® and Y(®*) denote all the inputs and outputs (both test and train) for task ¢. The joint probability
of the outputs and task specific parameters for 7' tasks, given the inputs and global parameters is:
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In the next section, the goal is to meta-learn fast and accurate approximations to the posterior predictive
distribution p(§"|2®), 0) = [ p(5®|2®,®, 0)p(xv®|z®, D® 0)dy® for unseen tasks ¢.

2.2 Probabilistic Inference

This section provides a framework for meta-learning approximate inference that is a simple reframing
and extension of existing approaches [Finn et al.l 2017, |Grant et al., 2018]]. We will employ point esti-
mates for the shared parameters 6 since data across all tasks will pin down their value. Distributional
estimates will be used for the task-specific parameters since only a few shots constrain them.

Once the shared parameters are learned, the probabilistic solution to few-shot learning in the model
above comprises two steps. First, form the posterior distribution over the task-specific parameters
p(v®]2® DO 9). Second, compute the posterior predictive p(7()|z(*), ). These steps will require
approximation and the emphasis here is on performing this quickly at test time. We will describe
the form of the approximation, the optimization problem used to learn it, and how to implement this
efficiently below. In what follows we initially suppress dependencies on the inputs & and shared
parameters 6 to reduce notational clutter, but will reintroduce these at the end of the section.

Specification of the approximate posterior predictive distribution. Our framework approxi-
mates the posterior predictive distribution by an amortized distribution g4 (3| D). That is, we learn
a feed-forward inference network with parameters ¢ that takes any training dataset D(*) and test
input & as inputs and returns the predictive distribution over the test output (). We construct this by
amortizing the approximate posterior g4 (1| D) and then form the approximate posterior predictive
distribution using:

4(31D) = / P(31)g5 (| D)dy. (1)

This step may require additional approximation e.g. Monte Carlo sampling. The amortization will
enable fast predictions at test time. The form of these distributions is identical to those used in
amortized variational inference [Edwards and Storkey, [2017} [Kingma and Welling| 2014]. In this
work, we use a factorized Gaussian distribution for g (¢| D) with means and variances set by the
amortization network. However, the training method described next is different.

Meta-learning the approximate posterior predictive distribution. The quality of the approxi-
mate posterior predictive for a single task will be measured by the KL-divergence between the true
and approximate posterior predictive distribution KL [p(§|D)||g¢ (7] D)]. The goal of learning will be
to minimize the expected value of this KL averaged over tasks,

¢* = argmin E_[KL [p(7|D) g6 (§|D)]] = argmax E [1og [raloainia]. @
¢  p(D) ) p(y,D)

Training will therefore return parameters ¢ that best approximate the posterior predictive distribution
in an average KL sense. So, if the approximate posterior g4 (1| D) is rich enough, global optimization
will recover the true posterior p(1|D) (assuming p(i|D) obeys identifiability conditions [Casella
and Berger, 2002])E] Thus, the amortized procedure meta-learns approximate inference that supports
accurate prediction.

The right hand side of Eq. indicates how training could proceed: (i) select a task ¢ at random,
(ii) sample some training data D®), (iii) form the posterior predictive q¢(-|D(t)) and, (iv) compute
the log-density log g, (7| D) at test data ) not included in D™*). Repeating this process many
times and averaging the results would provide an unbiased estimate of the objective which can then
be optimized. This perspective also makes it clear that the procedure is scoring the approximate

?Note that the true predictive posterior p(y|D) is recovered regardless of the identifiability of p(z|D).



inference procedure by simulating approximate Bayesian held-out log-likelihood evaluation. Im-
portantly, while an inference network is used to approximate posterior distributions, the training
procedure differs significantly from standard variational inference. In particular, rather than mini-
mizing KL(g4(v|D)|p(|D)), our objective function directly focuses on the posterior predictive
distribution and minimizes KL(p(§|D)||g4(g|D)).

End-to-end stochastic training. Armed by the insights above we now layout the full training
procedure. We reintroduce inputs and shared parameters 6 and the objective becomes:
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We optimize the objective over the shared parameters 6 as this will maximize predictive performance
(i.e., Bayesian held out likelihood). An end-to-end stochastic training objective for 6 and ¢ is:

9= 37 Z log 7 ZP (59120, 4(7,0), withvf? ~ g5 (wID.0) &

and {y,(,fl), im ,DWY ~ p(7, %, D), where p represents the data distribution (e.g., sampling tasks and

splitting them into disjoint training data D and test data {(ngl) g,(n))}Mf ). This type of training
therefore uses episodic train / test splits at meta-train time. We have also appr0x1mated the integral
over ¢ using L Monte Carlo samples. The local reparametrization [Kingma et al.| [2015] trick enables
optimization. Interestingly, the learning objective does not require an explicit specification of the prior

distribution over parameters, p(1()|6), learning it implicitly through gs(¢| D, 6) instead.

3 Versatile Amortized Inference

A versatile system is one that makes inferences both rapidly and flexibly. By rapidly we mean that
test-time inference involves only simple computation such as a feed-forward pass through a neural
network. By flexibly we mean that the system supports a variety of tasks — including variable numbers
of shots or numbers of classes in classification problems — without retraining. Rapid inference comes
automatically with the use of a deep neural network to amortize the approximate posterior distribution
q. However, it typically comes at the cost of flexibility: amortized inference is usually limited to a
single specific task. Below, we discuss design choices that enable us to retain flexibility.

Inference with sets as inputs. The amortization network takes data sets of variable size as inputs
whose ordering we should be invariant to. We use permutation-invariant instance-pooling operations
to process these sets similarly to Qi et al|[2017] and as formalized in [Zaheer et al.| [2017]]. The
instance-pooling operation ensures that the network can process any number of training observations.

VERSA for Few-Shot Image Classification. For few-shot image classification, our parameteriza-
tion of the probabilistic model is inspired by early work from Heskes| [2000]], Bakker and Heskes
[2003]] and recent extensions to deep learning [Bauer et al.l 2017, |Qiao et al., 2017]]. A feature ex-
tractor neural network hy(x) € R4e shared across all tasks, feeds into a set of task-specific linear
classifiers with softmax outputs and weights and biases 1)) = {IW®) b(")} (see Fig. .

A naive amortization requires the approximate posterior ¢,;(1| D, #) to model the distribution over
full weight matrices in R%*¢ (and biases). This requires the specification of the number of few-shot
classes C' ahead of time and limits inference to this chosen number. Moreover, it is difficult to meta-
learn systems that directly output large matrices as the output dimensionality is high. We therefore
propose specifying g4(1|D, 6) in a context independent manner such that each weight vector 1.
depends only on examples from class ¢, by amortizing individual weight vectors associated with a
single softmax output instead of the entire weight matrix directly. To reduce the number of learned
parameters, the amortization network operates directly on the extracted features hy(x):

C
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Figure 2: Computational flow of VERSA for few-shot classification with the context-independent approximation.
Left: A test point T is mapped to its softmax output through a feature extractor neural network and a linear
classifier (fully connected layer). The global parameters 6 of the feature extractor are shared between tasks
whereas the weight vectors w§c) of the linear classifier are task specific and inferred through an amortization
network with parameters ¢. Right: Amortization network that maps the extracted features of the £ training

examples of a particular class to the corresponding weight vector of the linear classifier.
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Figure 3: Computational flow of VERSA for few-shot view reconstruction. Left: A set of training images and
angles {(ygf), mgf ) )}ﬁzl are mapped to a stochastic input w(t> through the amortization network q. w(t) is then
concatenated with a test angle £ and mapped onto a new image through the generator 6. Right: Amortization

network that maps k£ image/angle examples of a particular object-instance to the corresponding stochastic input.

Note that in our implementation, end-to-end training is employed, i.e., we backpropagate to 6 through
the inference network. Here k. is the number of observed examples in class ¢ and ). = {w., b.}
denotes the weight vector and bias of the linear classifier associated with that class. Thus, we construct
the classification matrix (") by performing C' feed-forward passes through the inference network

qs(¥|D, 0) (see Fig.[2).

The assumption of context independent inference is an approximation. Our theoretical arguments use
insights from Density Ratio Estimation [Mohamed, 2018}, Sugiyama et al.|[2012], and we empirically
demonstrate that full approximate posterior distributions are close to their context independent coun-
terparts. Critically, the context independent approximation addresses all the limitations of a naive
amortization mentioned above: (i) the inference network needs to amortize far fewer parameters
whose number does not scale with number of classes C' (a single weight vector instead of the entire
matrix); (ii) the amortization network can be meta-trained with different numbers of classes per task,
and (iii) the number of classes C' can vary at test-time.

VERSA for Few-Shot Image Reconstruction (Regression). We consider a challenging few-shot
learning task with a complex (high dimensional and continuous) output space. We define view
reconstruction as the ability to infer how an object looks from any desired angle based on a small set
of observed views. We frame this as a multi-output regression task from a set of training images with
known orientations to output images with specified orientations.

Our generative model is similar to the generator of a GAN or the decoder of a VAE: A latent vector
) € R%  which acts as an object-instance level input to the generator, is concatenated with an angle
representation and mapped through the generator to produce an image at the specified orientation. In
this setting, we treat all parameters 6 of the generator network as global parameters (see Appendix E
for full details of the architecture), whereas the latent inputs () are the task-specific parameters. We



use a Gaussian likelihood in pixel space for the outputs of the generator. To ensure that the output
means are between zero and one, we use a sigmoid activation after the final layer. ¢ parameterizes an
amortization network that first processes the image representations of an object, concatenates them
with their associated view orientations, and processes them further before instance-pooling. From
the pooled representations, ¢, (1| D, ) produces a distribution over vectors (). This process is
illustrated in Fig. [3] Note that this approach to view construction is conceptually similar to Generative
Query Networks [Eslami et al.,[2018]].

4 Experiments and Results

4.1 Few Shot Classification

We evaluate VERSA on standard few-shot classification tasks in comparison to previous work. Specif-
ically, we consider the Omniglot [Lake et al., [2011]] and minilmageNet [Ravi and Larochelle, [2017]]
datasets which are C-way classification tasks with k. examples per class. VERSA follows the im-
plementation in Sections 2] and 3] and the approximate inference scheme in Eq. (5). We follow the
experimental protocol established by [Vinyals et al.| [2016] for Omniglot and Ravi and Larochelle
[2017] for minilmagenet, using equivalent architectures for hy. Training is carried out in an episodic
manner: for each task, k. examples are used as training inputs to infer q¢(1/)(c) |D, 9) for each class,
and an additional set of examples is used to evaluate the objective function.

Table[T]details few-shot classification performance for VERSA as well as competitive approaches. The
tables include results for only those approaches with comparable training procedures and convolutional
feature extraction architectures. Approaches that employ pre-training and/or residual networks [Bauer
et al., 2017, Q1ao et al., 2017, [Rusu et al., 2018|, |Gidaris and Komodakis), 2018, |(Oreshkin et al., [2018|,
Garcia and Brunal 2017} [Lacoste et al., 2018]] have been excluded so that the quality of the learning
algorithm can be assessed separately from the power of the underlying discriminative model.

For Omniglot, the training, validation, and test splits have not been specified for previous methods,
affecting the comparison. VERSA achieves a new state-of-the-art results (67.37% - up 1.38% over
the previous best) on 5-way - 5-shot classification on the minilmageNet benchmark and (97.66% - up
0.02%) on the 20-way - 1 shot Omniglot benchmark for systems using a convolution-based network
architecture and an end-to-end training procedure. VERSA is within error bars of state-of-the-art on
three other benchmarks including 5-way - 1-shot minilmageNet, 5-way - 5-shot Omniglot, and 5-way
- 1-shot Omniglot. Results on the Omniglot 20 way - 5-shot benchmark are very competitive with, but
lower than other approaches. While most of the methods evaluated in Table[T|adapt all of the learned
parameters for new tasks, VERSA is able to achieve state-of-the-art performance despite adapting
only the weights of the top-level classifier.

Table 1: Accuracy results for few-shot classification. The =+ sign indicates the 95% confidence interval. Bold
text indicates the highest scores that overlap in their confidence intervals.

Omniglot minilmageNet

5-way accuracy (%) 20-way accuracy (%) S-way accuracy (%)
Method 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot
Siamese Nets [Koch et al.|[2015] 97.3 98.4 88.1 97.0
Matching Nets [Vinyals et al.[[2016] 98.1 98.9 93.8 98.5 46.6 60.0
Neural Statistician [Edwards and Storkey![2017] 98.1 99.5 93.2 98.1
Memory Mod [Kaiser et al.|[2017] 98.4 99.6 95.0 98.6
Meta LSTM [Ravi and Larochelle! 2017 43.44 +£0.77 60.60 = 0.71
MAML [Finn et al.|[2017] 98.7+ 0.4 99.9 + 0.1 95.8+0.3 98.9+0.2 487+ 1.84 63.11 £0.92
Prototypical Nets [Snell et al.|2017] 97.4 99.3 95.4 98.7 46.61 £ 0.78 65.77 £ 0.70
mAP-SSVM [Triantafillou et al.[[2017] 98.6 99.6 95.2 98.6 50.32 +0.80 63.94 +£0.72
mAP-DLM [Triantafillou et al.|[2017] 98.8 99.6 95.4 98.6 50.28 +0.80 63.70 £ 0.70
LLAMA [Grant et al.|[2018] 49.40 + 1.83
PLATIPUS [Finn et al.|2018] 50.13 + 1.86
Meta-SGD [Li et al.[[2017] 99.53 +£0.26 9993 +0.09 9593 +0.38 9897+0.19 5047+ 1.87 64.03+0.94
SNAIL [Mishra et al.|[2018] 99.07 £0.16 99.78 £0.09 97.64 +£ 0.30 99.36 + 0.18 45.1 55.2
Relation Net [[Yang et al.||[2018] 99.6 + 0.2 99.8 + 0.1 97.6 + 0.2 99.1 + 0.1 5044 +0.82 6532 +£0.70
Reptile [Nichol and Schulman 2018 97.68 +0.04 99.48 £0.06 89.43+0.14 97.12+£0.32 4997 +0.32 65.99 + 0.58
BMAML [Kim et al.|[2018] 53.8 + 1.46
VERSA (Ours) 99.70 + 0.20 99.75 +0.13 97.66 + 0.29 98.77 +0.18 53.40 +1.82 67.37 - 0.86




Versatility. VERSA allows us to vary the number of classes C' and shots k. between training and
testing (Eq. (5)). Fig. fa] shows that a model trained for a particular C-way retains very high accuracy
as C' is varied. For example, when VERSA is trained for the 20-Way, 5-Shot condition, at test-time
it can handle C' = 100 way conditions and retain an accuracy of approximately 94%. Fig. Ab] shows
similar robustness as the number of shots k. is varied. VERSA therefore demonstrates considerable
flexibility and robustness to the test-time conditions, but at the same time it is efficient as it only
requires forward passes through the network. The time taken to evaluate 1000 test tasks with a 5-way,
5-shot minilmageNet trained model using MAML (https://github. com/cbfinn/maml) is 302.9
seconds whereas VERSA took 53.5 seconds on a NVIDIA Tesla P100-PCIE-16GB GPU. This is
more than 5x speed advantage in favor of VERSA while bettering MAML in accuracy by 4.26%.
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Figure 4: Test accuracy on Omniglot when varying (a) way (fixing shot to be that used for training) and (b)
shot. In Fig.[4b} all models are evaluated on 5-way classification. Colors indicate models trained with different
way-shot episodic combinations.

4.2 Few-Shot View Reconstruction

ShapeNetCore v2 [[Chang et al |2015]] is a database of 3D objects covering 55 common object
categories with ~51,300 unique objects. For our experiments, we use 12 of the largest object categories.
We concatenate all instances from all 12 of the object categories together to obtain a dataset of 37,108
objects. This dataset is then randomly shuffled and we use 70% of the objects for training, 10% for
validation, and 20% for testing. For each object, we generate 36 views of size 32 x 32 pixels spaced
evenly every 10 degrees in azimuth around the object.

We evaluate VERSA by comparing it to a conditional variational autoencoder (C-VAE) with view
angles as labels [Kingma et al.||2014} [Narayanaswamy et al.,2017] and identical architectures. We
train VERSA in an episodic manner and the C-VAE in batch-mode on all 12 object classes at once.
We train on a single view selected at random and use the remaining views to evaluate the objective
function. Fig. [5]shows views of unseen objects from the test set generated from a single shot with
VERSA as well as a C-VAE and compares both to ground truth views. Both VERSA and the C-VAE
capture the correct orientation of the object in the generated images. However, VERSA produces
images that contain much more detail and are visually sharper than the C-VAE images. Although
important information is missing due to occlusion in the single shot, VERSA is often able to accurately
impute this information presumably due to learning the statistics of these objects.
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