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Abstract

We present a simple technique to train deep latent variable models (DLVMs) when
the training set contains missing data. Our approach is based on the importance-
weighted autoencoder (IWAE) of Burda et al. (2016), and also allows single or
multiple imputation of the incomplete data set. We illustrate it by training a
convolutional DLVM on a static binarisation of MNIST that contains 50% of
missing data. Leveraging mutiple imputations, we train a convolutional network
that classifies these incomplete digits as well as complete ones.

1 Training deep generative models with missing data

We start with some i.i.d. data stored in a matrix X = (x1, . . . ,xn)T ∈ Xn. We assume that p
different features are present in the data, leading to the decomposition X = X1 × . . . × Xp (for
example, if all features are continuous, X = Rp). When some data are missing, we split each sample
i ∈ {1, . . . , n} into the observed features xo

i and the missing features xm
i . The indices of the missing

features are stored in binary vectors mi ∈ {0, 1}p such that mij = 0 if feature j is observed for
sample i, and mij = 1 if feature j is missing.

We wish to explain these potentially high-dimensional data using some latent variables Z =
(z1, . . . , zn)T ∈ Rn×d. While the dimension d of the latent space will often be smaller than
the dimension of the input space X , this will not always be the case.

1.1 Deep Latent Variable Models

DLVMs (Rezende et al., 2014; Kingma and Welling, 2014) assume that (xi, zi)i≤n are driven by the
following generative model: {

z ∼ p(z)
pθ(x|z) = Φ(x|fθ(z)),

(1)

where (Φ(·|η))η∈H is a parametric family of distributions over X called the observation model.
Often, it is a very simple family such as the Gaussian distribution if X is continuous, or products
of multinomial distributions if X is discrete. The function fθ : Rd → H is called the decoder (or
the generative network), and is parametrised by a deep neural network whose weights are stored
in θ ∈ Θ. Here, we will make the general assumption that the observation model (Φ(·|η))η∈H is
such that all its marginal and conditional distributions are available in closed-form, which is true for
commonly used observation models like the Gaussian or the Bernoulli ones. This assumption will
conveniently guarantee that the quantity pθ(xo|z) is easy to compute.

DLVMs are usually trained using approximate maximum likelihood techniques that maximise lower
bounds of the log-likelihood function. In our case, the likelihood of the observed data xo

1, . . . ,x
o
n is
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equal to

`(θ) =

n∑
i=1

log pθ(xo
i ) =

n∑
i=1

log

∫
pθ(xo

i |z)p(z)dz. (2)

Under the assumption that the data are missing-at-random, maximising `(θ) is a sound inference
procedure. Unfortunately, the integrals involved in this expression make direct maximum likelihood
impractical. However, it is possible to derive tractable tight lower bounds of `(θ) whose maximisation
is much easier. More precisely, we will base our inference strategy on the importance-weighted
autoencoder (IWAE) of Burda et al. (2016), which combines ideas from amortised variational
inference and importance sampling.

To build a lower bound using amortised variational inference, we will define a parametrised condi-
tional distribution qγ(z|xo) called the variational distribution that will play the role of a proposal
distribution close to the intractable posterior pθ(z|xo). Specifically this conditional distribution
will be defined as qγ(z|xo) = Ψ(z|gγ(ι(xo)), where ι is an imputation function chosen beforehand
that transforms xo and m into a complete input vector ι(xo) ∈ X such that ι(xo)o = xo. The set
(Ψ(·|κ))κ∈K is a parametric family of simple distributions over Rd, called the variational family,
and the function gγ : X → K, called the inference network or the encoder, is parametrised by a deep
neural network whose weights are stored in γ ∈ Γ. Its role will be to transform each data point into
the parameters of Ψ.

Following the steps of Burda et al. (2016), we can use the distribution qγ to build approachable
stochastic lower bounds of `(θ). More specifically, given K ∈ N∗, we define the missing data
importance-weighted autoencoder (missIWAE) bound

LK(θ, γ) =

n∑
i=1

Ezi1,...,ziK∼qγ (z|xo
i)

[
log

1

K

K∑
k=1

pθ(x
o
i |zik)p(zik)

qγ(zik|xo
i)

]
. (3)

When K = 1, the bound resembles the variational autoencoder (VAE, Kingma and Welling, 2014)
objective, so we call this bound the missVAE bound. In very interesting concurrent work, Nazabal
et al. (2018) derived independently the missVAE bound. They also discuss efficient strategies to
design observation models that handle heterogeneous data sets.

This quantity is exactly the expected value of what we would get if we were to estimate the log-
likelihood by approximating the integrals pθ(x1), . . . , pθ(xn) present in Eq. (2) using importance
sampling, with proposal distributions qγ(z|xo

1), . . . , qγ(z|xo
n). Regarding these importance sampling

problems, it follows from a classical result of Monte Carlo integration (see e.g. Robert and Casella
2004, Section 3.3.2) that the optimal (in the sense of minimising the variance of the estimate) proposal
distributions would exactly be the posterior distributions pθ(z|xo

1), . . . , pθ(z|xo
n). For this reason,

for all i ∈ {1, . . . , n}, we may interpret (and use) qγ(z|xo
i ) as an approximation of the posterior.

Jensen’s inequality ensures that LK(θ, γ) ≤ `(θ), which means that LK is indeed a lower bound of
the likelihood of the incomplete data set. Rather than optimising the intractable likelihood `(θ), we
will maximise LK(θ, γ) with respect to both θ and γ.

1.2 Properties of the missIWAE bound

The use of the imputation function ι, which fills in the missing values in each data point in order
to feed it to the encoder, is the main originality of the missIWAE bound. Intuitively, it would be
desirable to use an accurate imputation function. However, thanks to the properties of importance
sampling, using a very rough imputation is acceptable, whenK is large. Indeed, a direct consequence
of the Theorem 1 of Burda et al. (2016) is that when the posterior distributions have lighter tails than
their variational counterparts: L1(θ,γ) ≤ L2(θ,γ) ≤ . . . ≤ LK(θ,γ) −−−−→

K→∞
`(θ).

Consequently, we suggest that the function ι can simply be the zero imputation function, which
replaces missing values by zeroes. More complex imputations can of course be used; it would also be
possible to use a parametrised imputation function that could be learned by maximising LK .

Regarding the variational family, we choose to limit our experiments to the family of Gaussian
distributions with diagonal covariances, similarly to the original IWAE of Burda et al. (2016).
However, it is worth noticing that our missIWAE bound could be used for any reparametrisable
variational family, like the ones listed by Figurnov et al. (2018). Moreover, an interesting alternative
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to Gaussians would be to consider elliptical distributions, as recently proposed by Domke and Sheldon
(2018).

In general, the encoder can simply be a fully connected network, as in Burda et al. (2016). However,
when dealing with images or sounds, it will often be more reasonable to use a convolutional network,
as in Salimans et al. (2017). When the data are sequential, recurrent networks are also an option (see
e.g. Bowman et al. 2016; Gómez-Bombarelli et al. 2018).

2 Missing data imputation

We assume in this section that we are given a data point x ∈ X composed of some observed features
xo and some missing data xm. This data point can be taken from the training set, or from another
incomplete data set sampled from the same distribution.

Since we have already learned a generative model pθ , a good way of imputing xm would be to sample
according to its conditional distribution

pθ(xm|xo) =

∫
pθ(xm|xo, z)p(z|xo)dz. (4)

The nonlinearity of the decoder makes this conditional distribution hard to assess. However, it
is possible to build a Metropolis-within-Gibbs sampler whose stationary distribution is exactly
pθ(xm|xo) (Mattei and Frellsen, 2018). The Metropolis-within-Gibbs sampler of Mattei and Frellsen
(2018) was designed to leverage DLVMs trained on complete data, and critically requires the
availability of a good approximation of the posterior distribution of the complete data pθ(z|x). While
training a VAE or an IWAE will provide an approximation of pθ(z|x) via the inference network,
using the missIWAE bound rather provides an approximation of pθ(z|xo). Therefore, the scheme of
Mattei and Frellsen (2018) seem unfit for our purposes. We will therefore derive a new imputation
technique compatible with a DLVM trained using the missIWAE bound. The main idea is to leverage
the fact that qγ(z|xo) ≈ pθ(z|xo).

Single Imputation with missIWAE. Let us first focus on the single imputation problem: finding
a single imputation x̂m that is close to the true xm. If the data are continuous and the `2 norm is a
relevant error metric, then the optimal decision-theoretic choice would be x̂m = E[xm|xo], which is
likely to be intractable for the same reasons pθ(xm|xo) is. We can actually give a recipe to estimate
the more general quantity E[h(xm)|xo], where h(xm) is any absolutely integrable function of xm.
Indeed, this integral can be estimated using self-normalised importance sampling with the proposal
distribution pθ(xm|xo, z)qγ(z|xo), leading to the estimate E[h(xm)|xo] ≈

∑L
l=1 wlh

(
xm
(l)

)
, where

(xm
(1), z(1)), . . . , (x

m
(L), z(L)) are i.i.d. samples from pθ(xm|xo, z)qγ(z|xo) that can be sampled via

simple ancestral sampling, and, for all l ∈ {1, . . . , L}

wl =
rl

r1 + ...+ rL
, with rl =

pθ(xo|z(l))p(z(l))
qγ(z(l)|xo)

. (5)

Multiple Imputation with missIWAE. Multiple imputation is also approachable using similar
computations. Indeed, using sampling importance resampling with the weights of Eq. (5) allows to
draw samples that will be approximately i.i.d. samples from pθ(xm|xo) when L is large.

3 Experiments

We wish to train a DLVM on an incomplete version of the static binarisation of MNIST (with 50%
of the pixels missing uniformly at random), using the convolutional architecture of Salimans et al.
(2015). To assess the validity of our claim that using a naive imputation function is not too harmful,
we compare using the zero imputation function, and using an oracle imputation that utilises the true
values of the missing pixels. The results are shown in Fig. 1. In the missVAE case (K = 1), using
the oracle imputation provides a clear improvement. In the missIWAE case (with K = 50), both
imputations schemes are on par (in accordance with our hypothesis), and outperform significantly the
missVAE. As shown in Fig. 1, the missIWAE (with zero imputation) obtained is almost competitive
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Figure 1: Left: Estimated test log-likelihood of various models trained on binary MNIST. Our
missIWAE with zero imputation trained with half as much data as a regular VAE, and is less than 2
nats below. Right : Single imputation results for binary MNIST.

Test accuracy Test cross-entropy

Zero imputation 0.973880 (0.001832) 0.100334 (0.009197)
missForest imputation 0.980490 (0.001767) 0.064458 (0.006586)
missIWAE, mean imputation 0.984730 (0.000942) 0.051013 (0.003482)
missIWAE, multiple imputation 0.986830 (0.000831) 0.050900 (0.004439)
Complete data 0.986630 (0.000723) 0.046384 (0.002628)

Table 1: Test accuracy and cross-entropy obtained by training a convolutional network using the
imputed versions of the static binarisation of MNIST. The numbers are the mean of 10 repeated
trainings with different seeds and standard deviations are shown in brackets.

with a VAE trained on the complete MNIST data set. A few random samples from the missIWAE
with zero imputation are displayed in Fig. 2.

We also evaluate the quality of the imputations provided by missIWAE. To this end, we use missVAE
and missIWAE with zero imputation, together with the proposed importance sampling scheme
for imputation, and compare them to a state-of-the-art single imputation algorithm: missForest
(Stekhoven and Bühlmann, 2011). The results are displayed in Fig. 1. When L ≥ 10, both missVAE
and missIWAE outperform missForest, and missIWAE provides the most accurate imputations when
L ≥ 1 000. Some simple imputation results are also presented in Fig. 3.

To evaluate multiple imputation, we consider the task of classifying the incomplete binary MNIST data
set. We train a two-layer convolutional network (whose architecture is similar to the dropout one of
Wan et al., 2013 and model selection is done using early stopping) using the original data and and some
imputed versions, and assess the classification performance on the test set. Regarding missIWAE, we
use both the single imputation obtained with 10 000 importance samples, and a multiple imputation of
20 complete data sets obtained using sampling importance resampling. Interestingly, the convolutional
network trained with the 20 imputed data sets outperforms the one trained on complete data in terms
of classification error (but not when it comes to the test cross-entropy). This suggests that the
DLVM trained using missIWAE generalises quite well, and may also be used efficiently for data
augmentation.

Figure 2: Random samples from the convolutional DLVM trained with the missIWAE bound. Half of
the pixels of the MNIST training set were missing at random.
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Figure 3: Random incomplete samples from the MNIST training data set, and the imputations
obtained by missIWAE (trained with K = 50 importance weights, and imputed with L = 10 000
importance weights).
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