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Abstract

Deep latent variable models (DLVMs) are flexible generative models whose like-
lihood is often intractable. Such models can be trained thanks to an encoder (or
inference network) that plays the role of an approximation of the posterior dis-
tribution of the latent variables. Conveniently, this encoder can also be used to
estimate the likelihood, by using it as a proposal in importance sampling. When
assessing the likelihood of out-of-sample data, it is common practice not to refit the
encoder to the new data. We point out the drawbacks of this practice and advocate
for refitting the encoder as a simple refinement the popular importance sampling
estimate of the likelihood.

1 Deep latent variable models and their likelihood

Deep latent variable models (DLVMs, Rezende et al., 2014; Kingma and Welling, 2014) are generative
models that draw their flexibility from deep architectures. DLVMs assume that (xi, zi)i≤n ∈
(X × Rd)n are i.i.d. random variables driven by the following generative model:{

z ∼ p(z)
pθ(x|z) = Φ(x|fθ(z)).

(1)

The low-dimensional hidden codes z ∈ Rd are passed though a function fθ : Rd → H , called the
decoder or generative network, parametrised by a neural network whose weights are stored in θ ∈ Θ.
The set (Φ(·|η))η∈H , called the observation model, is a parametric family of densities with respect
to a dominating measure (usually the Lebesgue or the counting measure).

The marginal distribution of the data is then a rather difficult quantity to compute because of the
integration over the latent space. Consequently, Monte Carlo estimation though importance sampling
is often performed to estimate the likelihood. The optimal proposal for importance sampling would be
the posterior distribution of the code, which is also likely not to be amenable. However, this complex
posterior can be approximated by a tractable conditional distribution qγ(z|x) = Ψ(z|gγ(x)), where
(Ψ(·|κ))κ∈K is a family of densities over Rd, and gγ : X → K is a neural network called the
encoder, or inference network, whose weights are stored in γ ∈ Γ. Conveniently, estimates of both θ
and γ can be found by maximising the function

L(θ,γ) =

n∑
i=1

Ez∼qγ(z|xi)

[
log

pθ(xi, z)

qγ(z|xi)

]
, (2)

often called the evidence lower bound (ELBO). Indeed, the identity

L(θ,γ) =

n∑
i=1

log pθ(xi)−
n∑

i=1

KL(qγ(z|xi)||pθ(z|xi)), (3)
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implies that maximising L(θ,γ) will both maximise a lower bound of the likelihood, and therefore
find a suitable θ, and minimise the Kullback-Leibler divergences between the true posteriors and the
distributions qγ(z|x1), . . . , qγ(z|xn), which will will ensure that qγ is a valid approximation of the
posterior. Using qγ(z|x) as an importance sampling proposal leads to the estimate

pθ(x) ≈ 1

K

K∑
k=1

pθ(x|zk)p(zk)

qγ(zk|x)
, (4)

where z1, ..., zK are i.i.d. samples from qγ(z|x). As suggested by Burda et al. (2016), this estimate
can also be used to define a tighter lower bound of the log-likelihood than the one given in Eq. (2).
This leads to the importance weighted autoencoder (IWAE) objective function

LK(θ,γ) =

n∑
i=1

Ez1,...,zK∼qγ(z|xi)

[
log

1

K

K∑
k=1

pθ(xi|zk)p(zk)

qγ(zk|xi)

]
. (5)

While the IWAE objective is trickier to optimise (Tucker et al., 2018; Rainforth et al., 2018), it gives
a provably more accurate estimate of the log-likelihood that converges to the exact log-likelihood as
K →∞ (Burda et al., 2016; Nowozin, 2018).

2 Likelihood evaluation for out-of-sample data

Assume that we have trained a DLVM and have access to a couple encoder/decoder (fθ∗ , gγ∗). Let x̃
be a new, unseen data point (for example a test sample). An important quantity in generative modelling
is the likelihood pθ∗(x̃) of this new data point. For example, the test likelihood is commonly used
as a performance metric for generative models and in particular for DLVMs, see e.g. Rezende et al.
(2014); Salimans et al. (2015); Rezende et al. (2016).

Rezende et al. (2014, Appendix E) suggested to use the trained encoder to estimate pθ∗(x̃), leading
to

pθ∗(x̃) ≈ 1

K

K∑
k=1

pθ∗(x̃|zk)p(zk)

qγ∗(zk|x̃)
, (6)

with z1, ..., zK ∼ qγ∗(z|x̃). As we argued in Section 1, for any training data point xi (i ∈ {1, ..., n}),
there are good reasons to believe that qγ∗(z|xi) is a good proposal to perform importance sampling
in order to estimate pθ∗(xi). However, due to potential overfitting of the decoder, qγ∗(z|x̃) might
be a poor proposal when it comes to estimate pθ∗(x̃), as exhibited by Wu et al. (2017) and Cremer
et al. (2018). Consequently, Wu et al. (2017) and Cremer et al. (2018) suggested to used annealed
importance sampling (AIS), and Nowozin (2018) also proposed a refinement of the importance
sampling estimate. Because of its simplicity, the importance sampling estimate in Eq. (6) remains
very commonly used. We describe here a cheap and simple way to improve it that was already
outlined, but not implemented, by Cremer et al. (2018).

Rather than reusing the trained encoder gγ∗ , we can fit a new encoder gγ̃ by minimising the Kullback-
Leibler divergence between qγ(z|x̃) and pθ(z|x̃) with respect to γ, which is equivalent to finding

γ̃ ∈ arg min
γ∈Γ

Ez∼qγ(z|x̃)

[
log

pθ∗(x̃, z)

qγ(z|x̃)

]
. (7)

This new encoder gγ̃ will lead to a proposal qγ̃(z|x̃) that is closer (in the Kullback-Leibler sense) to
the optimal one pθ∗(z|x̃). Of course, if a single new data point is considered, fitting a new encoder is
unnecessary and one can simply perform local variational inference, as suggested by Cremer et al.
(2018). The main advantage of the refitting is evident when we are dealing with many out-of-sample
data points x̃1, ..., x̃N , and that the optimisation problem naturally becomes

γ̃ ∈ arg min
γ∈Γ

N∑
i=1

Ez∼qγ(z|x̃i)

[
log

pθ∗(x̃i, z)

qγ(z|x̃i)

]
. (8)

Conveniently, this objective function is just the ELBO of the new data, and can be optimised quickly
by initialising the encoder using gγ∗ and performing a few passes of stochastic gradient descent
through the out-of-sample data.
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Figure 1: Top: Estimates of the average log-likelihood obtained with importance sampling using the
original vanilla encoder gγ∗ and the retrained one gγ̃ (median and quartiles over 10 replications).
Bottom: Difference between the estimates. As predicted by the theory of Burda et al. (2016), the gap
is decreasing. However, its very slow decay motivates the refitting of the encoder.

But isn’t it cheating to refit with out-of-sample data? The short answer is no, because the
encoder is not part of the generative model. More precisely, if the likelihood pθ∗(x̃) is the quantity of
interest, then, since this quantity does not involve γ, we are free to choose the value of γ as we wish.
It is then reasonable to choose a value that will lead to a good estimate of the quantity of interest
pθ∗(x̃), which is the goal of our refitting process. In particular, if the goal is model comparison, it is
of paramount importance to obtain a good estimate of the test likelihood, irregardless of the quality
of the encoder. Note, however, that if we wished to assess the quality of the couple encoder/decoder
rather than of the model (for example, by looking at the test value of the IWAE objective), refitting
the encoder on a test set would be proscribed.

3 Experiments

We train a VAE on the static binarisation of MNIST, using the convolutional architecture of Salimans
et al. (2015). Training is done using the Adam optimiser (Kingma and Ba, 2014) and the gradient
estimates of Roeder et al. (2017). We then use the trained VAE to evaluate the log-likelihood of
the MNIST test set, and a slightly corrupted version. For the corrupted version, we simply take the
original test set, and change the value of 10 pixels chosen uniformly at random in each image. The
log-likelihood is estimated using the IWAE objective. Since this is a stochastic lower bound of the
true log-likelihood, a higher objective will mean a more accurate estimation. As proposal, we use
either the original encoder or a refitted one obtained by performing 10 passes over the test data.

Results for various numbers of samples are provided in Fig. 1. Even when several thousands of
samples are used, the refitting procedure significantly improves the accuracy of the log-likelihood
estimate, especially in the slightly corrupted case.

4 Conclusion

The most commonly used performance metric of VAEs and related models is the test log-likelihood
estimate obtained using 5 000 importance samples and an encoder fit on training data. In spite of the
known shortcomings (Wu et al., 2017; Cremer et al., 2018; Nowozin, 2018) of this approach, which
is also confirmed by our experiments, it is likely that this estimate will still be used frequently in
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practice, because of its ease of implementation. We suggest that the refitting process described in this
note can play the role of a convenient and easy improvement to this popular estimate.
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