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Abstract

We propose the Information Maximization Autoencoder (IMAE), an information
theoretic approach to simultaneously learn continuous and discrete representations
in an unsupervised setting. Unlike the Variational Autoencoder framework, IMAE
starts from a stochastic encoder that seeks to map each input data to a hybrid
discrete and continuous representation with the objective of maximizing the mutual
information between the data and their representations. A decoder is included to
approximate the posterior distribution of the data given their representations, where
a high fidelity approximation can be achieved by leveraging the informative repre-
sentations. We show that the proposed objective is theoretically valid and provides
a new perspective for understanding the tradeoffs regarding informativeness of the
representation factors, disentanglement of representations, and decoding quality.

1 Introduction

A central tenet for designing and learning a model for data is that the resulting representation should
be compact yet informative. Therefore, the goal of learning can be formulated as finding informative
representations about the data under proper constraints. In this work, we propose an information
theoretic approach to simultaneously learn continuous and discrete representations in an unsupervised
setting. We start with a stochastic encoder pθ(z|x) and aim at maximizing the mutual information
between the data x and its representation z. In this setting, a reconstruction or generating phase
can be obtained as the variational inference of the true posterior pθ(x|z). By explicitly seeking
informative representations, the proposed model yields better decoding quality. Moreover, we show
that the information maximization objective naturally induces a balance between the informativeness
of each latent factor and the statistical independence between them, which gives a more principled
way to learn semantically meaningful representations.

Another contribution of this work is proposing a framework for simultaneously learning continuous
and discrete representations for categorical data. Categorical data are ubiquitous in real-world tasks,
where using a hybrid discrete and continuous representation to capture both categorical information
and continuous variation in data is more consistent with the natural generation process. We focus on
categorical data that are similar in nature, i.e., where different categories still share similar variations
(features). We seek to learn semantically meaningful discrete representations while maintaining
disentanglement of the continuous representations that capture the variation shared across categories.

2 Information Maximization Representation Learning

Given data x ∈ Rd, we consider learning a hybrid continuous-discrete representation, denoted
respectively with variables z ∈ RK1 and y ∈ {1, . . . ,K2}, using a stochastic encoder parameterized
by θ, i.e., pθ(y, z|x). We seek to learn compact yet semantically meaningful representations in the
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sense that they should be low dimensional but informative enough about the data. A natural approach
is to maximize the mutual information [Cover and Thomas, 2012] Iθ(x;y, z) between the data and its
representation under the constraint K1,K2 � d. A probabilistic decoder qφ(x|y, z) is adopted to ap-
proximate the true posterior pθ(x|y, z), which can be hard to estimate or even intractable. The dissim-
ilarity between them is optimized by minimizing the KL divergence DKL (pθ(x|y, z)||qφ(x|y, z)).
In summary, IMAE considers the following,

maximizeθ,φ β0Iθ(x;y, z)−DKL (pθ(x|y, z)||qφ(x|y, z)) . (1)
Given that H(x) is independent of the optimization procedure, we can show that optimizing (1) is
equivalent to optimizing the following:

maximizeθ,φ βIθ(x;y, z) + Epθ(x,y,z) [log qφ(x|y, z)] , β = β0 − 1 > 0 . (2)
We set β > 0 to balance between maximizing the informativeness of latent representations and
maintaining the decoding quality. The second term is often interpreted as the “reconstruction error"
which can be optimized using the reparameterization tricks proposed by [Kingma and Welling,
2013] and [Jang et al., 2016] for the continuous representation z and the discrete representation y
respectively. Now we introduce our method to optimize the first term Iθ(x;y, z) in (2).

2.1 Simultaneously seeking informativeness and disentanglement

Assuming the conditional distribution of the representation (y, z) given x is factorial, and similarly
for the marginal distribution pθ(y, z) = pθ(y)pθ(z), then

Iθ(x;y, z) = Iθ(x;y) +
∑K1

k=1Iθ(x; zk)−DKL

(
pθ(z)

∣∣∣∣ΠK1

k=1pθ(zk)
)
. (3)

The first two terms of the RHS quantify how much information each latent factor carries about the
data. The last term is known as the total correlation of z [Watanabe, 1960], which quantifies the
statistical independence between the continuous latent factors and achieves the minimum if and only
if they are independent of each other. Eq (3) implies that maximizing Iθ(x;y, z) can be conducted
by maximizing informativeness of each latent factor while simultaneously promoting statistical
independence between the continuous factors. Various Monte Carlo based sampling methods have
been proposed to optimize the total correlation term [Chen et al., 2018, Esmaeili et al., 2018]; we
follow this line. Next we construct tractable approximations for Iθ(x; zk) and Iθ(x;y) respectively.

2.2 Informative continuous representations

Without any constraints, the mutual information Iθ(x; zk) between the data and its continuous
representation factor can be trivially maximized by severely fragmenting and exploding the latent
space. Specifically, as shown in Proposition 11, zk is more informative about x if it has less uncertainty
given x yet captures more variance in data, i.e., σk(x) is small while µk(x) is dispersed within a
large space. This can result in discontinuity of the latent representation zk, where in the extreme case
each data point is associated with a delta distribution in the latent space pθ(zk|x(i)) = δ(z

(i)
k ).

Proposition 1 Suppose the conditional distribution pθ(z|x) is a factorial Gaussian distribution with
mean µ(x) and covariance Σ(x). Let σ(x) ∈ RK1 denote the diagonal entries of Σ(x), then

Iθ(x; zk) ≤ 1

2
log
[(
Ex

[
σ2
k(x)

]
+ Varx [µk(x)]

)]
− 1

2
Ex

[
log σ2

k(x)
]
, k = 1, . . . ,K1 . (4)

The equality in (4) is attained if and only if zk is Gaussian distributed, given which we have

Iθ(x; zk) ≥ 1

2
log
(
1 + Varx [µk(x)] /Ex

[
σ2
k(x)

])
, k = 1, . . . ,K1 . (5)

To remedy this issue while achieving the upper bound in Proposition 1, a natural resolution is to
squeeze zk within the domain of a Gaussian distribution with finite variance. By doing so, we can get
a more reasonable trade-off between enlarging the spread of µk(x) and maintaining the continuity of
zk, while achieving the maximal I(x; z) among all possible solutions with the same variance of zk.
Therefore, we consider the following as the surrogate for maximizing Iθ(x; zk),

maxθ Lθ(z) := −
∑K1

k=1DKL (pθ(zk)||r(zk)) . (6)
Here r(zk) is an i.i.d scaled normal distribution with variance being some prefixed finite value.

1While similar results have likely been established, we include Proposition 1 to motivate our objective design.
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2.3 Informative discrete representations

The mutual information Iθ(x;y) between the data and its discrete representation can be well ap-
proximated, given the fact that the cardinality of the space of y is typically low. To be more precise,
Proposition 2 shows that, with a suitably large batch of samples, the empirical mutual information
Îθ(x;y) is a good approximation to Iθ(x;y). This enables us to optimize Iθ(x;y) in a theoretically
justifiable way that is amenable to stochastic gradient descent with minibatches of data. Hence, to
maximize Iθ(x;y) we consider the following,

maxθ Lθ(y) := Îθ(x;y) = H
(

1
M

∑M
m=1pθ(y|xm)

)
− 1

M

∑M
m=1H (pθ(y|xm)) . (7)

Proposition 2 Assume the marginal probabilities of the true and predicted labels are bounded
below, i.e. pθ(y), p̂θ(y) ∈ [1/(CK2), 1] for all y ∈ {1, . . . ,K2} with some constant C > 1. Then

P
(∣∣∣Iθ(x;y)− Îθ(x;y)∣∣∣ ≤ K2 (max{logCK2 − 1, 1}+ e)

√
log(2K2/δ)

2M

)
≥ 1− 2δ, δ ∈ (0, 1).

Overall Objective As a summary of (3) (6) and (7), so far we have

max
θ,φ

β
(
Lθ(z) + Lθ(y)−DKL

[
p(z)||ΠK1

k=1p(zk)
])

+ Epθ(x,y,z) [log qφ(x|y, z)] .

The first three terms are associated with our information maximization objective, while the last one
aims at better approximation of the posterior pθ(x|y, z). A better balance between these two targets
can be achieved by weighting them differently. The informativeness of each latent factor can be
optimized through Lθ(z) and Lθ(y), while statistically independent latent continuous factors can be
promoted by minimizing the total correlation term. Therefore, trade-offs can be formalized regarding
the informativeness of each latent factor, disentanglement of the representation, and better decoding
quality. With this final adjustment, we settle on the following overall objective:

max
θ,φ
LIMAE := Epθ(x,y,z) [log qφ(x|y, z)]

+ βLθ(y) + βLθ(z)− γDKL

[
pθ(z)||ΠK1

k=1pθ(zk)
]
, β, γ > 0 . (8)

3 Numerical Results

We compare IMAE against a number of VAE based approaches, including β-VAE [Higgins et al.,
2016], InfoVAE [Zhao et al., 2017] and JointVAE [Dupont, 2018]. A summarization of these models
is provided in Appendix A. We would like to show that IMAE can (i) successfully learn a hybrid
continuous and discrete representation, with y matching the natural categorical information well
and z capturing the disentangled feature information shared across categories; (ii) outperform the
other models on achieving a better trade-off between the interpretability of the representation and the
decoding quality. We choose the priors r(z) and r(y) as isotropic Gaussian distribution and uniform
distribution over categories respectively.

3.1 Informative representations yield better interpretability

Figure 1 validates Proposition 1 by showing that, with roughly same amount of variance for each
latent variable zk, those achieving high mutual information with the data have mean values µk(x) of
the conditional probability p(zk|x) disperse across data samples and variances σk(x) decrease to
small values for all data samples. As seen in Figure 1(b)-(d), informative variables in the continuous
representation have uncovered intuitive latent factors of the variation in the data, while the factor z8
has no mutual information with the data and shows no variation. We observe the same phenomenon
for the discrete representation y in Figure 1(e)&(f), which were obtained with two different values of
β and γ, where the more informative one matches the natural labels better.

3.2 Quantitative comparisons

In this section, we perform quantitative evaluations on MNIST and dSprites. Before we present
our main results, we first describe an assumption that we make on the discrete representations. A
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(b) I(x,z2) = 1.7 (c) I(x,z4) = 0.9 (d) I(x,z8) = 0

(e) I(x,y) = 2.1 (f) I(x,y) = 1.7

Figure 1: IMAE on MNIST. (a) Illustration of Proposition 1. (b)-(d) Latent traverse on the
continuous representations z. The rows are conditioned on the discrete representations y learnt by
IMAE, where for each row z is initialized by feeding the encoder with randomly selected data whose
labels are predicted as y. We then manipulate each selected zk within [−2, 2] while keeping all other
dimensions fixed. (e) & (f) Discrete representations learnt by IMAE with different β values.

reasonable assumption is that the conditional distribution p(y|x) should be locally smooth so that the
data samples that are close on their manifold should have high probability of being assigned to the
same category [Agakov, 2005]. This assumption is crucial for using neural networks to learn discrete
representations, since it’s easy for a high capacity model to learn a non-smooth function p(y|x) that
can abruptly change its predictions without guaranteeing similar data samples will be mapped to
similar y. To remedy this issue, we adopt the virtual adversarial training (VAT) trick proposed by
[Miyato et al., 2016] and augment Lθ(y) as follows:2

max Lθ(y) := Îθ(x;y)− Ep̂(x)
[
max‖η‖≤εH (pθ(y|x); pθ(y|x + η))

]
. (9)

The second term of RHS regularizes pθ(y|x) to be consistent within the ε norm ball of each data
sample so as to maintain local smoothness of the prediction model. For fair comparison, we augment
all four methods with VAT. We found that using VAT is essential for all of them except β-VAE to learn
interpretable discrete representations.

Figure 2: IMAE on MNIST. We track the key quantities for different models by sweeping β. We set
γ = 2β for IMAE. For each β, we run each method over 10 random initializations.

MNIST Figure 4 shows that, by simply pushing the conditional distribution p(y|x) towards the
uniform distribution r(y), β-VAE sacrifices the mutual information I(x;y) and hence struggles in
learning interpretable discrete representation even with VAT. On the other hand, large β values drive β-
VAE to sacrifice more mutual information I(x; z) between the data and its continuous representations,
which together with the less informative discrete representation result in poor decoding quality. In
contrast, the other three methods can remedy this issue to different degrees, and hence attain better
trade-off regarding informativeness of latent representations and decoding quality. Compared to
JointVAE and InfoVAE, IMAE is more capable of learning discrete representations over a wide
range of β, γ values, which implies that less overlap between the manifolds of different categories

2In this paper, we set ε = 1 across datasets. VAT can be effectively approximated by a pair of forward and
backward passes [Miyato et al., 2016].
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Figure 3: Disentanglement comparison on dSprites. IMAE performs well regarding the disentan-
glement score vs. decoding quality trade-off, especially in the region of interest where both decoding
quality and informativeness of representations are fairly good. The results are reported by training
each method with β ∈ [1, 10] (we set β = γ/2 with γ ∈ [1, 10] for IMAE). For each β value, every
method is trained over 10 random initializations. Shade regions indicate the 80% confidence intervals.

is induced. As a result, IMAE is expected to yield better decoding quality for each category, seen
for MNIST in Figure 2. Although InfoVAE and JointVAE also learn comparatively good discrete
representations with large and small β values respectively, the corresponding results of these two
regions have poor decoding quality or a much lower disentanglement score (see Figure 3). In contrast,
IMAE consistently performs well with different hyperparameter values, especially in the region of
interest where the decoding quality and the informativeness of latent representations are good enough.

2D Shapes We now evaluate IMAE on dSprites where the ground truth of both continuous and
discrete representaion factors are available. We use the disentanglement metric proposed by [Chen
et al., 2018]. The higher the disentanglement score is, the more disentangled the representation
factors are. 3

As shown in Figure 3, with large β values, β-VAE penalizes the mutual information too much and
this degrades the usefulness of representations, while all other three methods achieve higher disentan-
glement score with better decoding quality. For JointVAE, higher β values push the upper bound of
the mutual information to converge to the prefixed target value; it therefore can maintain more mutual
information between the data and the overall latent representations and give better decoding quality.
However, the associated disentanglement quality is poor. This implies that simply restricting the
overall capacity of the latent representations is not enough for learning disentangled representations.
While InfoVAE yields a comparatively better disentanglement score by pushing the marginal joint
distribution of the representations towards a factorial distribution more aggressively with large values
of β, the associated decoding quality and informativeness of latent representations are both poor. In
contrast, IMAE is capable of achieving a better trade-off between the disentanglement score and the
decoding quality in the region of interest where the decoding quality as well as the informativeness
are fairly good. We attribute this to the effect of explicitly seeking statistically independent latent
factors by minimizing the total correlation term in our objective.

4 Conclusion

Unsupervised joint learning of disentangled continuous and discrete representations is a challenging
problem due to the lack of a prior for semantic awareness and other inherent difficulties that arise in
learning discrete representations. This work takes a step towards achieving this goal. A limitation of
our model is that it pursues disentanglement by assuming or trying to encourage independent scalar
latent factors, which may not always be sufficient for representing real data. For example, data may
exhibit category specific variation, or a subset of latent factors might be correlated. This motivates us
to explore more structured disentangled representations; one possible direction is to encourage group
independence. We leave this for future work.
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A Supplement for the numerical results

LVAE = Ep(y,z|x) [q(x|y, z)]−DKL (p(z|x)||r(z))−DKL (p(y|x)||r(y)) ← ELBO

= Ep(y,z|x) [q(x|y, z)]︸ ︷︷ ︸
1©

− I(x;y)︸ ︷︷ ︸
2©

−DKL (p(y)||r(y))︸ ︷︷ ︸
3©

− I(x; z)︸ ︷︷ ︸
4©

−DKL (p(z)||r(z))︸ ︷︷ ︸
5©

β-VAE: 1©− β ( 2©+ 3©)− β ( 4©+ 5©) InfoVAE: 1©− β 3©− β 5©
Joint-VAE: 1©− β | 2©+ 3©− Cy | − β | 4©+ 5©− Cz|

Figure 4: Summarization of relevant works. β-VAE modifies ELBO by increasing the penalty
on the KL divergence terms. Both InfoVAE and WAE drop the mutual information terms from
ELBO. JointVAE seeks to control the mutual information by pushing the their upper bounds, i.e., the
associated KL divergence terms, towards progressively increased target values, Cy and Cz .

Table 1: Encoder and Decoder architecture for MNIST and Fashion MNIST.
Encoder Decoder

Input vectorized 28× 28 grayscale image Input y ∈ R10 and z ∈ R10

FC. 500 BatchNorm ReLU FC. 500 ReLU
FC. 2× 500 BatchNorm ReLU FC. 500 ReLU
FC. 20 (µz , log σz) + 10 (py) FC. 28× 28 Sigmoid

Table 2: Encoder and Decoder architecture for dSprites.
Encoder Decoder

Input vectorized 64× 64 grayscale image Input y ∈ R3 and z ∈ R10

FC. 1200 ReLU FC. 1200 ReLU
FC. 1200 ReLU FC. 1200 ReLU

FC. 2× 1200 ReLU FC. 1200 ReLU
FC. 20 (µz , log σz) + 3 (py) FC. 28× 28 Sigmoid
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