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Abstract

Stochastic video prediction models take in a sequence of image frames, and gener-
ate a sequence of consecutive future image frames. These models typically gener-
ate future frames in an autoregressive fashion, which is slow and requires the input
and output frames to be consecutive. We introduce a model that overcomes these
drawbacks by generating a latent representation from an arbitrary set of frames
that can then be used to simultaneously and efficiently sample temporally con-
sistent frames at arbitrary time-points. For example, our model can “jump” and
directly sample frames at the end of the video, without sampling intermediate
frames. Synthetic video evaluations confirm substantial gains in speed and func-
tionality without loss in fidelity. We also apply our framework to a 3D scene re-
construction dataset. Here, our model is conditioned on camera location and can
sample consistent sets of images for what an occluded region of a 3D scene might
look like, even if there are multiple possibilities for what that region might contain.
Reconstructions and videos are available at https://bit.ly/2O4Pc4R.

1 Introduction

The ability to fill in the gaps in high-dimensional data is a fundamental cognitive skill. Suppose you
glance out of the window and see a person in uniform approaching your gate carrying a letter. You
can easily imagine what will (probably) happen a few seconds later. The person will walk up the
path and push the letter through your door. Now suppose you glance out of the window the following
day and see a person in the same uniform walking down the path, away from the house. You can
easily imagine what (probably) happened a few seconds earlier. The person came through your gate,
walked up the path, and delivered a letter. Moreover, in both instances, you can visualize the scene
from different viewpoints. From your vantage point at the window, you can imagine how things
might look from the gate, or from the front door, or even from your neighbour’s roof. Essentially,
you have learned from your past experience of unfolding visual scenes how to flexibly extrapolate
and interpolate in both time and space. Replicating this ability is a significant challenge for AI.

To make this more precise, let’s first consider the traditional video prediction setup. Video prediction
is typically framed as a sequential forward prediction task. Given a sequence of frames f1, ..., ft, a
model is tasked to generate future frames that follow, ft+1, ..., fT . Existing models (Babaeizadeh
et al., 2018; Kalchbrenner et al., 2017; Finn et al., 2016) carry out the prediction in an autoregressive
manner, by sequentially sampling frame ft+n from p(ft+n|f1, ..., ft+n−1).
This traditional setup is often limiting – in many cases, we are interested in what happens a few
seconds after the input sequence. For example, in model based planning tasks, we might want to
predict what frame fT is, but might not care what intermediate frames ft+1, ..., fT−1 are. Exist-
ing models must still produce the intermediate frames, which is inefficient. Instead, our model is
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“jumpy” – it can directly sample frames in the future, bypassing intermediate frames. For example,
in a 40-frame video, our model can sample the final frame 12 times faster than an autoregressive
model like SV2P (Babaeizadeh et al., 2018).

More generally, existing forward video prediction models are not flexible at filling in gaps in data.
Instead, our model can sample frames at arbitrary time points of a video, given a set of frames at
arbitrary time points as context. So it can, for example, be used to infer backwards or interpolate
between frames, as easily as forwards. Our model is also not autoregressive on input or output
frames – it takes in each input frame in parallel, and samples each output frame in parallel.

In our setup of “jumpy” video prediction, a model is given frames f1, ..., fn from a single video
along with the arbitrary time-points t1, ..., tn at which those frames occurred. To be clear, t1, ..., tn
need not be consecutive or even in increasing order. The model is then asked to sample plausible
frames at arbitrary time points t′1, ..., t

′
k. In many cases there are multiple possible predicted frames

given the context, making the problem stochastic. For example, a car moving towards an intersection
could turn left or turn right. Although our model is not autoregressive, each set of k sampled frames
is consistent with a single coherent possibility, while maintaining diversity across sets of samples.
That is, in each sampled set all k sampled frames correspond to the car moving left, or all correspond
to the car moving right.

A key innovation of our method is that we present a way to capture correlations over multiple tar-
get frames, without being autoregressive on input or output frames. At a high level, our model,
JUMP, takes in the input frames and samples a stochastic latent that models the stochasticity in the
video. Given arbitrary query time-points, the model uses the sampled latent to render the frame at
those time-points. This approach is grounded by Di Finetti’s theorem – since the viewpoint-frame
sequence is exchangeable the observations are all conditionally independent with respect to some
latent variable. The theorem does not tell us how to learn such a latent variable, and we add other
ingredients to learn the latent effectively.

Our method is not restricted to video prediction – it can be viewed as a general way to design
consistent, jumpy architectures. For example, when conditioned on camera position, our model
can sample consistent sets of images for an occluded region of a scene, even if there are multiple
possibilities for what that region might contain.

We test JUMP on multiple synthetic datasets. To summarize our results: on a synthetic video pre-
diction task involving five shapes, we show that JUMP produces frames of a similar image quality
to modern video prediction methods. Moreover, JUMP converges more reliably, and can do jumpy
predictions. To showcase the flexibility of our model we also apply it to stochastic 3D reconstruc-
tion, where our model is conditioned on camera location instead of time. For this, we introduce a
dataset that consists of images of 3D scenes containing a cube with random MNIST digits engraved
on each of its faces. JUMP outperforms GQN (Eslami et al., 2018) on this dataset, as GQN is un-
able to capture several correlated frames of occluded regions of the scene. We focus on synthetic
datasets so that we can quantify how each model deals with stochasticity. For example, in our 3D
reconstruction dataset we can control when models are asked to sample image frames for occluded
regions of the scene, to quantify the consistency of these samples. We strongly encourage the reader
to check the project website https://bit.ly/2O4Pc4R to view videos of our experiments.

To summarize, our key contributions are as follows.

1. We motivate and formulate the problem of jumpy stochastic video prediction, where a model
has to predict consistent target frames at arbitrary time points, given context frames at arbi-
trary time points. We observe close connections with consistent stochastic 3D reconstruc-
tion tasks, and abstract both problems in a common framework.

2. We present a method for consistent jumpy predictions in videos and scenes. Unlike existing
video prediction models, our model consumes input frames and samples output frames
entirely in parallel. It enforces consistency of the sampled frames by training on multiple
correlated targets, sampling a global latent, and using a deterministic rendering network.

3. We show strong experimental results for our method. Unlike existing sequential video
prediction models, our model can also do jumpy video predictions. We show that our
model also produces images of similar quality while converging more reliably. Our model
is not limited to video prediction – we develop a dataset for stochastic 3D reconstruction.
Here, we show that our model significantly outperforms GQN.
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2 Related Work

Video Prediction A common limitation of video prediction models is their need for determinism
in the underlying environments (Lotter et al., 2017; Srivastava et al., 2015; Boots et al., 2014; Finn
et al., 2016; Liu et al., 2017). Creating models that can work with stochastic environments is the
motivation behind numerous recent papers: On one end of the complexity spectrum there are models
like Video Pixel Networks (Kalchbrenner et al., 2017) and its variants (Reed et al., 2017b) that are
powerful but computationally expensive models. These models generate a video frame-by-frame,
and generate each frame pixel-by-pixel. SV2P (Babaeizadeh et al., 2018) and SAVP (Lee et al.,
2018) do not model each individual pixel, but autoregressively generate a video frame-by-frame.
On the other end of the spectrum, sSSM (Buesing et al., 2018) is a faster model that generates
an abstract state at each time step which can be decoded into a frame when required. All these
stochastic models still generate frames (or states) one time-step at a time and the input and output
frames must be consecutive. By bypassing these two issues JUMP extends this spectrum of models
as a flexible and faster stochastic model. Additionally, unlike prior methods, our models can be used
for a wider range of tasks – we demonstrate our approach on stochastic 3D reconstruction.

3D Reconstruction Research in 3D reconstruction can be broadly divided into two categories:
on the one hand there are traditional 3D reconstruction methods that require some predefined de-
scription of the underlying 3D structure. This type of algorithms include structure-from-motion,
structure-from-depth and multi view geometry techniques and while these models have achieved
impressive results, they require researchers to handcraft a feature space in advance (Pollefeys et al.,
2004; Wu et al., 2016; Zhang et al., 2015).

On the other hand there are more recent neural approaches that learn an implicit representation from
data directly. The aim of these models however is usually to learn the distribution over images as
opposed to learning the 3D structure of an environment (Kingma & Welling, 2014; Rezende et al.,
2014; Goodfellow et al., 2014; Gregor et al., 2016b). Viewpoint transformation networks do focus
on learning this structure, however the possible transformations are limited and the models have
only been non-probabilistic so far (Choy et al., 2016; Tatarchenko et al., 2016; Fouhey et al., 2016).

Finally, GQN (Eslami et al., 2018) is a recent deep learning model used for spatial prediction. How-
ever, GQN was primarily used for deterministic 3D reconstruction. In stochastic 3D reconstruction,
GQN is unable to capture several correlated frames of occluded regions of a scene.

Meta-Learning Finally, our task can be framed as a few-shot density estimation problem and is
thus related to some ongoing research in the area of meta learning. Meta learning is often associated
with few-shot classification tasks (Vinyals et al., 2016; Koch et al., 2015) but these algorithms can
be extended to few-shot density estimation for image generation (Bartunov & Vetrov, 2018). Addi-
tional approaches include models with variational memory (Bornschein et al., 2017), attention (Reed
et al., 2017a) and conditional latent variables (Rezende et al., 2016). Crucially, while these mod-
els can sample the estimated density at random they cannot query it at specific target points and
their application is limited to visually less challenging datasets like omniglot. Concurrent work
on neural processes (Garnelo et al., 2018), can query the density at specific target points, but on
low-dimensional data-sets like 2D function regression and 2D contextual bandit problems.

3 Methods

3.1 Problem Description

We consider problems where we have a collection of “scenes”. Scenes could be videos, 3D spatial
scenes, or in general any key-indexed collection. A scene S(i) consists of a collection of viewpoint-
frame (key-value) pairs (v(i)1 , f

(i)
1 ), ..., (v

(i)
n , f

(i)
n ) where v(i)j refers to the indexing ‘viewpoint’ in-

formation and f (i)j to the frame. For videos the ‘viewpoints’ are timestamps. For spatial scenes
the ‘viewpoints’ are camera positions and headings. For notational simplicity, we assume that each
scene has fixed length n (but this is not a requirement of the model). The viewpoint-frame pairs
in each scene are generated from a data generative process D, as formulated below. Note that the
viewpoint-frame pairs are typically not independent.
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(v
(i)
1 , f

(i)
1 ), ..., (v(i)n , f (i)n ) ∼ D = P ((v1, f1), ..., (vn, fn)) (1)

Each scene S is split into a context and a target. The context C contains m viewpoint-frame pairs
C = {(vi, fi)}mi=1. The target T contains the remaining n − m viewpoints V = {vi}ni=m+1 and
corresponding target frames F = {fi}ni=m+1. At evaluation time, the model receives the context
C and target viewpoints V and should be able to sample possible values F̂ corresponding to the
viewpoints V . In particular, the model parameterizes a (possibly implicit) conditional distribution
Pθ(F |C, V ), from which the frames are sampled.

Given a training set of N example scenes from data distribution D, the training objective is to find
model parameters θ that maximize the log probability of the data

E
C,V,F∼D

[logPθ(F |C, V )]. (2)

3.2 Model (Generation)

v1 f1

v2 f2

v3 f3
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Renderer
Mγ

f’1

f’2
Renderer

Mγ

Sample frame at v’1
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Figure 1: JUMP uses a prior Pφ to sample a latent z, conditioned on the input frames and viewpoints.
JUMP then uses a rendering network Mγ to render z at arbitrary viewpoints e.g. v′1, v

′
2.

We implement JUMP as a latent variable model. For each scene S, JUMP encodes them viewpoint-
frame pairs of the context C by applying a representation function Mθ to each pair independently.
The resulting representations r1, ..., rm are aggregated in a permutation-invariant way to obtain a
single representation r. The latent variable z is then sampled from a prior Pφ that is conditioned on
this aggregated representation r. The idea behind z is that it can capture global dependencies across
the n−m target viewpoints, which is crucial to ensure that the output frames are generated from a
single consistent plausible scene. For each corresponding target viewpoint vi, the model applies a
deterministic rendering network Mγ to z and vi to get an output frame fi. Our model, JUMP, can
thus be summarized as follows.

rj =Mθ(vj , fj) for all j ∈ 1, ...,m

r = r1 + ...+ rm

z ∼ Pφ(z|r)
fi =Mγ(z, vi) for all i ∈ m+ 1, ..., n

In JUMP, the representation network Mθ is implemented as a convolutional network. The latent z
is sampled using a convolutional DRAW (Gregor et al., 2015, 2016b) prior, an LSTM-like model
that recurrently samples latents over several iterations. The rendering network Mγ is implemented
as an LSTM where the inputs z and v are fed in at each recurrent step. We give details of these
implementations in the Appendix. Note that these building blocks are easily customizable. For
example, DRAW can be replaced with a regular variational autoencoder, albeit at a cost to the visual
fidelity of the generated samples.

3.3 Model (Training)

We wish to find parameters θ∗, φ∗, γ∗ that maximize the log probability of the data under our model:

θ∗, φ∗, γ∗ = argmax
θ,φ,γ

f(θ, φ, γ) = argmax
θ,φ,γ

E
C,V,F∼D

[logPθ,φ,γ(F |C, V )]. (3)
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Figure 2: JUMP is trained using an approximate posterior Pψ that has access to multiple targets.

Since this optimization problem is intractable we introduce an approximate posterior
Pψ,θ(z|C, V, F ). We train the model by maximizing the evidence lower bound (ELBO), as
in (Rezende et al., 2014; Kingma & Welling, 2014), see derivation details in the Appendix. The
resulting formulation for the ELBO of our model is as follows.

E
C,V,F∼D

[
E

z∼Pψ,θ(z|C,V,F )

[
log

n∏
i=m+1

Pγ(fi|z, vi)
]
− KL(Pψ,θ(z|C, V, F ) || Pφ,θ(z|C))

]
. (4)

Note that this expression is composed of two terms: the reconstruction probability and the KL-
divergence from the the approximate posterior Pψ,θ(z|C, V, F ) to the conditional prior Pφ,θ(z|C).
We use the reparameterization trick to propagate gradients through the reconstruction probability.
As we are considering Gaussian probability distributions, we compute the KL in closed form. For
training, to ensure that our model’s likelihood has support everywhere, we add zero-mean, fixed
variance Gaussian noise to the output frame of our model. This variance (referred to as the pixel-
variance) is annealed down during the course of training.

4 Experiments

We evaluate JUMP against a number of strong existing baselines on two tasks: a synthetic, combi-
natorial video prediction task and a 3D reconstruction task.

4.1 Video Prediction

Narratives Dataset: We present quantitative and qualitative results on a set of synthetic datasets
that we call “narrative” datasets. Each dataset is parameterized by a “narrative” which describes
how a collection of shapes interact. For example, in the “Traveling Salesman” narrative (Figure 4),
one shape sequentially moves to (and “visits”) 4 other shapes. A dataset consists of many videos
which represent different instances of a single narrative. In each instance of a narrative, each shape
has a randomly selected color (out of 12 colors), size (out of 4 sizes), and shape (out of 4 shapes),
and is randomly positioned. While these datasets are not realistic, they are a useful testbed. In our
Traveling Salesman narrative with 5 shapes, the number of distinct instances (ignoring position) is
over 260 billion. With random positioning of objects, the real number of instances is higher.

Flexibility of JUMP: JUMP is more flexible than existing video prediction models. JUMP can take
arbitrary sets of frames as input, and directly predict arbitrary sets of output frames. We illustrate
this in Figure 3. In this “Color Reaction” narrative, shape 1 moves to shape 2 over frames 1 - 6,
shape 2 changes color and stays that color from frames 7 - 12. Figure 3A shows the ground truth
narrative. JUMP can take two frames at the start of the video, and sample frames at the end of the
video (as in Figures 3B, 3C). Alternatively, JUMP can go “backwards” and take two frames at the
end of the video, and sample frames at the start of the video (as in Figures 3D, 3E).

Quantitative Comparisons: We quantitatively compare the image frame quality in JUMP with
sSSM (Buesing et al., 2018), SV2P (Babaeizadeh et al., 2018), and CDNA (Finn et al., 2016). The
other models cannot do jumpy prediction. So we compare these models when used for forward
prediction on the Traveling Salesman narrative dataset, where one shape sequentially moves to (and
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Figure 3: In the “Color Reaction” narrative, shape 1 moves to shape 2 over frames 1 - 6, shape 2
changes color and stays that color from frames 7 - 12. The ground truth is shown in sub-figure A.
Our model sees 2 frames, labeled ‘seen’, and samples 2 ‘unseen’ samples. Our model is flexible
with respect to input-output structure, and can roll a video forwards (Figures 3B, 3C), backwards
(Figures 3D, 3E), or both ways (Figure 3F).

“visits”) 4 other shapes. The training set contains 98K examples, and the test set contains 1K
examples. To evaluate each model, we take 30 sample continuations for each video and compute the
minimum mean squared error between the samples and the original video. This metric, similar to the
one in (Babaeizadeh et al., 2018), measures that the model can (in a reasonable number of samples)
sample the true video. A model that exhibits mode collapse would fare poorly on this metric because
it would often fail to produce a sample close to the original video.

We swept over model size, learning rate, and stochasticity parameters for each model (see the Ap-
pendix for more details). We selected the best hyperparameter configuration. We ran the model with
that hyperparameter configuration over 15 random seeds (10 for CDNA), an advantage of testing on
a simple synthetic dataset. We ran all models for 3 days using distributed ADAM on 4 Nvidia K80
GPUs. For sSSM, we discarded runs where the KL loss became too low or too high (these runs had
very bad metric scores), and for SV2P we discarded a run which had especially poor metric scores.
This discarding was done to the benefit of SV2P and sSSM – for JUMP we used all runs. The plot,
with error bars of

√
2 times the standard error of the mean, is shown in Figure 5a.

The plot shows that JUMP converges much more reliably. Averaged across runs, our model performs
significantly better than sSSM, SV2P, and CDNA. This is despite discarding the worst runs for sSSM
and SV2P, but keeping all runs of JUMP. One possible hypothesis for why our model converges
more reliably is that we avoid back-propagation through time (BPTT) over the video frames. BPTT
is known to be difficult to optimize over. Instead, JUMP tries to reconstruct a small number of
randomly chosen target frames, from randomly chosen context frames.

Qualitative Comparisons: In Figure 4, we show samples from JUMP, sSSM, and SV2P. We also in-
clude samples from GQN, which does not have the architectural features used to enforce consistency
between the target frames, that is, the deterministic rendering network, global query-independent
latent, and reconstructing multiple target-frames simultaneously. We note that these architectural
components are essential for JUMP. Without these, each sampled frame is independent and so the
frames do not form a coherent video.

4.2 3D Reconstruction

Our model is also capable of consistent 3D reconstruction. In this setup, JUMP is provided with
context frames f1, ..., fm from a single 3D scene together with camera positions v1, ..., vm from
which those frames were rendered. The model is then asked to sample plausible frames rendered
from a set of arbitrary camera positions vm+1, ..., vn. Often the model is asked to sample frames
in an occluded region of the scene, where there are multiple possibilities for what the region might
contain. Even in the presence of this uncertainty, JUMP is able to sample consistent frames that
form a coherent scene. We encourage the reader to view videos visualizations of our experiments at
https://bit.ly/2O4Pc4R.
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Figure 4: In the Traveling Salesman narrative, one shape (in this case the green square) sequentially
moves towards and visits the other four shapes in some stochastic order. JUMP, sSSM and SV2P
generally capture this, but with shape and color artifacts. However, sSSM and SV2P are not jumpy.
GQN is jumpy but does not capture a coherent narrative where the green square visits all four objects
(in this case the white pentagon is not visited).

(a) JUMP converges more reliably to lower test
errors than video prediction models, over 15 runs.

(b) JUMP achieves lower (better) negative test
ELBO scores than GQN, over 6 runs.

Figure 5: Quantitative comparisons between JUMP and video and scene prediction models.

MNIST Dice Dataset: To demonstrate this, we develop a 3D dataset where each scene consists of
a cube in a room. Each face of the cube has a random MNIST digit (out of 100 digits) engraved on
it. In each scene, the cube is randomly positioned and oriented, the color and textures of the walls
are randomly selected, and the lighting source (which creates shadows) is randomly positioned. The
context frames show at most three sides of the dice, but the model may be asked to sample camera
snapshots that involve the unseen fourth side. We show quantitatively and qualitatively that JUMP
performs better than GQN on this dataset, because GQN is unable to capture a coherent scene.

JUMP vs GQN (Qualitative): GQN samples each frame independently, and does not sample a
coherent scene. We illustrate this in Figure 6, where we show an example scene from our test-set.
The context frames (blue cones) see three sides of the cube, but the model is queried (red cones) to
sample the occluded fourth side of the cube. Figure 6 also shows the samples for JUMP and GQN.
GQN (right column) independently samples a 7 and then a 0 on the unseen side of the dice. JUMP
samples a coherent scene, where the sampled unseen digit is consistently rendered across different
viewpoints. JUMP’s reconstruction accurately captures the ground truth digit, which shows that the
model is capable of sampling the target.

JUMP vs GQN (Quantitative): We can compare GQN and JUMP by analyzing the test-set negative
ELBO (as a proxy for the test-set negative log likelihood) over multiple target frames, each showing
different viewpoints of the same unseen face of the cube. This serves as a quantitative measure for
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Figure 6: A cube in a room, with MNIST digits engraved on each face (test-set scene). The blue
cones are where the context frames were captured from. The red cones are where the model is
queried. The context frames see three sides of the cube, but the models are tasked to sample from
the fourth, unseen, side. GQN (right column) independently samples a 0 and 7 for the unseen side,
resulting in an inconsistent scene. JUMP samples a consistent digit (2 or 9) for the unseen cube face.

the quality of the models’ reconstruction. To motivate why JUMP should do better, imagine that we
have a perfectly trained GQN and JUMP, which captures all the nuances of the scene. Since there
are 100 possible digits engraved on the unseen side, there is a 1/100 chance that each sampled frame
captures the ground truth digit on the unseen face. GQN samples the unseen digit independently
for each viewpoint, so the probability that a set of three frames all capture the ground truth digit
is 1/1000000. On the other hand, JUMP captures the correlations between frames. If the digit is
correct in one of three frames, it should be correct in the other two frames. So the probability that
a set of three frames all capture the ground truth digit is 1/100. In other words, a perfectly trained
consistent model will have better log likelihoods than a perfectly trained factored model.

In practice, the benefits of consistency may trade off with accuracy of rendering the scene. For
example, JUMP could produce lower quality images. So it is important to compare the models’
performance by comparing the test-set ELBOs. Figure 5b compares the test-set ELBOs for JUMP
and GQN. We ran 7 runs for each model, and picked the best 6/7 runs for each model (1 run for JUMP
failed to converge). The results suggest that JUMP achieve quantitatively better 3D reconstruction
than GQN.

JUMP Consistency Analysis: We also analyze the consistency of JUMP. We measure the KL
divergence from the posterior to the prior network in a trained JUMP model. We give JUMP a
context comprising of frames that show three sides of the cube. We condition the posterior on one
additional target frame that shows the unseen side of the cube, and compute the KL divergence from
the posterior to the prior, KL1. Alternatively, we condition the posterior on three additional target
frames that show the unseen side of the dice, and compute the KL divergence from the posterior to
the prior, KL3. The 2 extra target frames added for KL3 do not add any information, so KL3 ≈ KL1

for a consistent model. On the other hand, for a factored model like GQN, KL3 = 3KL1. We trained
12 JUMP models, and the mean KL3 was 4.25, the mean KL1 was 4.19, and the standard deviation
of KL3 − KL1 was 0.092. This suggests that JUMP’s predictions are consistent.

5 Conclusion

We have presented an architecture for learning generative models in the visual domain that can be
conditioned on arbitrary points in time or space. Our models can extrapolate forwards or backwards
in time, without needing to generate intermediate frames. Moreover, given a small set of contextual
frames they can be used to render 3D scenes from arbitrary camera positions. In both cases, they
generate consistent sets of frames for a given context, even in the presence of stochasticity. One
limitation of our method is that the stochastic latent representation is of a fixed size, which may
limit its expressivity in more complicated applications – fixing this limitation and testing on more
complex datasets are good avenues for future work. Among other applications, video prediction can
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be used to improve the performance of reinforcement learning agents on tasks that require looka-
head (Racanière et al., 2017; Buesing et al., 2018). In this context, the ability to perform jumpy
predictions that look many frames ahead in one go is an important step towards agents that can ex-
plore a search space of possible futures, as it effectively divides time into discrete periods. This is
an avenue we will be exploring in future work.
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A Appendix A: ELBO Derivation

The model is trained by maximizing an evidence lower bound, as in variational auto-encoders. We
begin by expressing the log probability of the data in terms of the model’s latent variable z.

E
C,V,F∼D

[logP (F |C, V )] = E
C,V,F∼D

[
log E

z∼Pφ,θ(z|C)

[
Pγ(F |z, V )

]]
The derivative of this objective is intractable because of the log outside the expectation. Using
Jensen’s inequality and substituting the log and expectation leads to an estimator that collapses to
the mean of the distribution. Instead, we use the standard trick of parameterizing an approximate
posterior distribution Pψ,θ. Instead of sampling z from the prior Pφ,θ(z|C) we sample z from the
approximate posterior Pψ,θ(z|C, V, F ) to get an equivalent objective.

f(θ, φ, γ) = f(θ, φ, γ, ψ) = E
C,V,F∼D

[
log E

z∼Pψ,θ(z|C,V,F )

[
Pφ,θ(z|C)

Pψ,θ(z|C, V, F )
Pγ(F |z, V )

]]
Note that for efficiency, we typically sample a subset of the target viewpoint-frame pairs (V, F )
instead of conditioning the posterior and training on the entire set. We now apply Jensen’s inequality
to get a lower bound (ELBO) that we maximize as a surrogate.

g(θ, φ, γ, ψ) = E
C,V,F∼D

[
E

z∼Pψ,θ(z|C,V,F )

[
log

(
Pφ,θ(z|C)

Pψ,θ(z|C, V, F )
Pγ(F |z, V )

)]]
g(θ, φ, γ, ψ) ≤ f(θ, φ, γ, ψ)

We can split the ELBO into 2 terms, the reconstruction probability and the KL-divergence between
the prior and posterior.

RP(θ, γ, ψ) = E
C,V,F∼D

[
E

z∼Pψ,θ(z|C,V,F )

[
logPγ(F |z, V )

]]

KL(θ, φ, ψ) = E
C,V,F∼D

[
KL(Pψ,θ(z|C, V, F ) || Pφ,θ(z|C))

]
g(θ, φ, γ, ψ) = RP(θ, γ, ψ)− KL(θ, φ, ψ)

Since we consider Gaussian probability distributions, the KL can be computed in closed form. For
the reconstruction probability, we note that each of the n −m target frames fi are generated inde-
pendently conditional on z and the corresponding viewpoint vi.

RP(θ, γ, ψ) = E
C,V,F∼D

[
E

z∼Pψ,θ(z|C,V,F )

[
log

n∏
i=m+1

Pγ(fi|z, vi)
]]

We can then apply the standard reparameterization trick (where we sample from a unit Gaussian
and scale the samples accordingly). This gives us a differentiable objective where we can compute
derivatives via backpropagation and update the parameters with stochastic gradient descent.
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B Appendix B: Model Details and Hyperparameters

We first explain some of the hyper-parameters in our model. For reproducibility, we then give the
hyper-parameter values that we used for the narrative concepts task and the 3D scene reconstruction
task.

For JUMP, recall that we added Gaussian noise to the output of the renderer to ensure that the
likelihood has support everywhere. We call the variance of this Gaussian distribution the pixel-
variance. When the pixel-variance is very high, the ELBO loss depends a lot more on the KL-
divergence between the prior and the posterior, than the mean squared error between the target and
predicted images. That is, a small change δ in the KL term causes a much larger change in the ELBO
than a small change δ in the mean squared error. As such, the training objective forces the posterior
to match the prior, in order to keep the KL low. This makes the model predictions deterministic.
On the other hand, when the pixel-variance is near zero, the ELBO loss depends a lot more on the
mean squared error between the target and predicted images. In this case, the model allows the
posterior to deviate far from the prior, in order to minimize the mean squared error. This leads to
good reconstructions, but poor samples since the prior does not overlap well with the (possible)
posteriors.

As such, we need to find a good pixel-variance that is neither too high, nor too low. In our case,
we linearly anneal the pixel-variance from a value α to β over 100,000 training steps. Note that
the other models, sSSM and SV2P, have an equivalent hyper-parameter, where the KL divergence is
multiplied by a value β. SV2P also performs an annealing-like strategy (Babaeizadeh et al., 2018).

For the traveling salesman dataset, we used the following parameters for the DRAW conditional
prior/posterior net (Gregor et al., 2015, 2016a). The rendering network was identical, except we do
not have a conditional posterior, making it deterministic.

Name Value Description

nt 4 The number of DRAW steps in the network.

stride to hidden [2, 2]
The kernel and stride size of the conv. layer
mapping the input image to the LSTM input.

nf to hidden 64 The number of channels in the LSTM layer.

nf enc 128 The number of channels in the conv. layer mapping
the input image to the LSTM input.

stride to obs [2, 2]
The kernel and stride size of the transposed conv. layer
mapping the LSTM state to the canvas.

nf to obs 128 The number of channels in the hidden layer
between LSTM states and the canvas

nf dec 64 The number of channels of the conv. layer mapping the
canvas state to the LSTM input.

nf z 3 The number of channels in the stochastic latent in each
DRAW step.

α 2.0 The initial pixel-variance.

β 0.5 The final pixel-variance.

For the encoder network, Mθ, we apply a convolutional net to each image separately. The convo-
lution net has 4 layers, with a ReLU non-linearity between each layer (but not after the last layer).
The first layer has 8 channels, kernel shape of 2x2, and stride lengths of 2x2. The second layer has
16 channels, kernel shape of 2x2, and stride lengths of 2x2. The third layer has 32 channels, kernel
shape of 3x3, and stride length of 1x1. The final layer has 32 channels, kernel shape of 3x3, and
stride length of 1x1.

For all other datasets, we use the same encoder network, and similar hyper-parameters. For the
MNIST Cube 3D reconstruction task, the main differences are that we use nt: 6, nf to hidden: 128,
nf dec: 128. We also had to use a slightly different annealing strategy for the pixel-variance. Simply
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annealing the variance down led to the KL-values collapsing to 0, and never rising back up. In
other words, the predictions became deterministic. We use an annealing strategy somewhat similar
to (Babaeizadeh et al., 2018). We keep the pixel-variance at 2.0 for the first 100,000 iterations, then
keep it at 0.2 for 50,000 iterations, then keep it at 0.4 for 50,000 iterations, and then finally leave it
at 0.9 until the end of training. The intuition is to keep the KL high first so that the model can make
good deterministic predictions. Then, we reduce the pixel-variance to a low value (0.2) so that the
model can capture the stochasticity in the dataset. Finally, we increase the pixel-variance so that the
prior and the posteriors are reasonably similar.

Note that for each stochastic video prediction model we tested (CDNA, SV2P, sSSM), we swept over
hyper-parameters, doing a grid search. We swept over size parameters, the learning rate, and the
parameter used to control the KL divergence between the conditional posterior and the conditional
prior. We ensured that we had tested hyper-parameter values slightly above, and below, the ones that
we found worked best.
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