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Abstract

Variational Bayesian neural networks combine the flexibility of deep learning
with Bayesian uncertainty estimation. However, inference procedures for flexible
variational posteriors are computationally expensive. A recently proposed method,
noisy natural gradient, is a surprisingly simple method to fit expressive posteri-
ors by adding weight noise to regular natural gradient updates. Noisy K-FAC is
an instance of noisy natural gradient that fits a matrix-variate Gaussian posterior
with minor changes to ordinary K-FAC. Nevertheless, a matrix-variate Gaussian
posterior does not capture an accurate diagonal variance. In this work, we extend
on noisy K-FAC to obtain a more flexible posterior distribution called eigenvalue
corrected matrix-variate Gaussian. The proposed method computes the full diago-
nal re-scaling factor in Kronecker-factored eigenbasis. Empirically, our approach
consistently outperforms existing algorithms (e.g., noisy K-FAC) on regression and

classification tasks.

1 Introduction

Building flexible and scalable uncertainty models [MacKay, 1992, Neal, 2012, Hinton and Van Camp,
1993] has long been a goal in Bayesian deep learning. Variational Bayesian neural networks [Graves,
2011, Blundell et al., 2015] are especially appealing because they combine the flexibility of deep
learning with Bayesian uncertainty estimation. However, such models tend to impose overly restricted
assumptions (e.g., fully-factorized) in approximating posterior distributions. There have been attempts
to fit more expressive distributions [Louizos and Welling, 2016, Sun et al., 2017], but they are difficult

to train due to strong and complicated posterior dependencies.

Noisy natural gradient is a simple and efficient method to fit
multivariate Gaussian posteriors [Zhang et al., 2017]. It adds
adaptive weight noise to regular natural gradient updates. Noisy
K-FAC is a practical algorithm in the family of noisy natural
gradient [Zhang et al., 2017], which fits a matrix-variate Gaus-
sian posterior (flexible posterior) with only minimal changes
to ordinary K-FAC update [Martens and Grosse, 2015] (cheap
inference). The update for noisy K-FAC closely resembles
standard K-FAC update with correlated weight noise.

Nevertheless, we note that a matrix-variate Gaussian cannot
capture an accurate diagonal variance. In this work, we build
upon the large body of noisy K-FAC and Eigenvalue corrected
Kronecker-factored Approximate Curvature (EK-FAC) [George
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Figure 1: A cartoon illustration to de-
scribe the relationships of FFG, MVG,
and EMVG.

et al., 2018] to improve the flexibility of the posterior distribution. We compute the diagonal variance,
not in parameter coordinates, but in K-FAC eigenbasis. This leads to a more expressive posterior
distribution. The relationship is described in Figure 1. Using this insight, we introduce a modified
training method for variational Bayesian neural networks called noisy EK-FAC.
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Figure 2: The diagonal re-scaling factor in K-FAC has Kronecker structure with n + p degrees of freedom.
The diagonal re-scaling matrix in EK-FAC is the second moment of the gradient vector with n X p degrees of
freedom.

2 Natural Gradient

Natural gradient descent is a second-order optimization technique first proposed by Amari [1997].
It is classically motivated as a way of implementing steepest descent in the space of distributions
instead of the space of parameters. The distance function for distribution space is the KL divergence

on the model’s predictive distribution: Dy, (pe || pe+aeg) = %HTFO, where F is the Fisher matrix.
F = E [V log p(y|x, w)Vy log p(y|x, w) ] ()

This results in the preconditioned gradients Vwh = F~1V,h. Natural gradient descent is invariant
to smooth and invertible reparameterizations of the model [Martens, 2014].

2.1 Kronecker-Factored Approximate Curvature

Modern neural networks contain millions of parameters which makes storing and computing the in-
verse of the Fisher matrix impractical. Kronecker-Factored Approximate Curvature (K-FAC) [Martens
and Grosse, 2015] uses Kronecker products to efficiently approximate the inverse Fisher matrix'.

For a layer of a neural network whose input activations are a € R™, weight matrix W € R"*P_ and
pre-activation output s € R?, we can write s = W " a. The gradient with respect to the weight matrix
is Viwwh = a(Vsh) ". Assuming a and s are independent under the model’s predictive distribution,
K-FAC decouples the Fisher matrix F*:

F =E [vec{Vwh}vec{Vwh} ] =E [{Vsh}{Vsh} T ®aa']

2
~E[{Vsh}{Vsh} | @E[aa’ ] =S® A @
where A = Efaa’| and S = E [{Vsh}{Vsh}"]. Bernacchia et al. [2018] showed that the
Kronecker approximation is exact for deep linear networks, justifying the validity of the above
assumption. Further assuming the between-layer independence, the Fisher matrix is approximated
as block diagonal consisting of layer-wise Fisher matrices. Decoupling F into A and S avoids the
memory issue of storing the full matrix F while also having the ability to perform efficient inverse
Fisher vector products:

F'vec{Vwh} =St ® A 'vec{Vwh} = vec|[A"'VwhS™}] 3)

As shown in equation (3), natural gradient descent with K-FAC only consists of a series of matrix
multiplications comparable to the size of W. This enables an efficient computation of a natural
gradient descent.

lExtending on this work, K-FAC was shown to be amenable to distributed computation [Ba et al., 2016] and
could generalize as well as SGD [Zhang et al., 2018].



2.2 An Alternative Interpretation of Natural Gradient

George et al. [2018] suggest an alternative way of interpreting the natural gradient update. It can be
broken down into three stages:

Flvec{Vwh} = QR Q" vec{Vwh} 4)

The first stage (=) projects the gradient vector to the full Fisher eigenbasis Q. The next step ()
re-scales the coordinates in full Fisher eigenbasis Q with the diagonal re-scaling factor R. The last
stage () projects back to the parameter coordinates.

For a diagonal approximation of the Fisher matrix, the basis is chosen to be identity matrix I and the
re-scaling factor R;; = E[(Vy)?] is the second moment of the gradient vector. While estimating the
diagonal factor is simple and efficient, obtaining an accurate eigenbasis is difficult. The crude basis
in the diagonal Fisher introduces a significant approximation error.

K-FAC decouples the Fisher matrix into S and A. Since S and A are symmetric positive semi-definite
matrices, by eigendecomposition, they can be represented as S = Qs AsQg and A = QaAAQ],
where Q is an orthogonal matrix whose columns are eigenvectors and A is a diagonal matrix with
eigenvalues. We use properties of the Kronecker product to further decompose the factorization:

S®A=QsAsQs ®QaAaQA = (Qs ®@Qa)(As ® Ax)(Qs ®Qa) " (5)

Based on the new interpretation, we have K-FAC eigenbasis Qg ® Qa and diagonal re-scaling factor
As ® Aa. K-FAC eigenbasis is provably a more accurate approximation of the full Fisher eigenbasis.
However, it does not use the estimated variance along the basis. The re-scaling factor in K-FAC is
constrained to the Kronecker structure.

2.3 Eigenvalue Corrected Kronecker-Factored Approximate Curvature

Eigenvalue corrected K-FAC (EK-FAC) [George et al., 2018] extends on K-FAC to compute a more
accurate diagonal re-scaling factor in K-FAC eigenbasis. The re-scaling factor for K-FAC is expressed
in n + p degrees of freedom, where n and p are input and output size of a layer. K-FAC factorization
in equation (5) does not capture an accurate diagonal re-scaling factor in K-FAC eigenbasis because
of the Kronecker structure. Instead, EK-FAC computes the second moment of the gradient vector in
K-FAC eigenbasis. We define the re-scaling matrix R € R™*"? as follows:

R;; =E[((Qs ® Qa) ' Vw)?] (6)

R is a diagonal matrix whose entries are the second moment. The Fisher matrix can be approximated
with K-FAC eigenbasis and the re-scaling matrix:

F~(Qs®Qa)R(Qs®Qa)" (7

EK-FAC re-scaling matrix minimizes the approximation error of the above equation in Frobenius norm.
In comparison to K-FAC approximation, Eigenvalue corrected K-FAC (EK-FAC) approximation is
more flexible in representing the diagonal re-scaling factor with n x p degrees of freedom. Figure 2
illustrates the difference between K-FAC and EK-FAC.

3 Variational Bayesian Neural Networks

Given a dataset D = {(x;,¥;)",}, a Bayesian Neural Network (BNN) is composed of a log-
likelihood p(D|w) and a prior p(w) on the weights. Performing inference on BNN requires integrat-
ing over the intractable posterior distribution p(w | D). Variational Bayesian methods [Hinton and
Van Camp, 1993, Graves, 2011, Blundell et al., 2015] attempt to fit an approximate posterior ¢(w) to
maximize the evidence lower bound (ELBO):

L[g] = Ey[log p(D | w)] — ADkr.(g(W) || p(w)) (8)

where ) is a regularization parameter and ¢ are parameters of the variational posterior. The exact
Bayesian inference uses A = 1, but it can be tuned in practical settings.

Bayes By Backprop (BBB) [Blundell et al., 2015] is the most common variational BNN train-
ing method. It uses a fully-factorized Gaussian approximation to the posterior i.e. g(w) =



N (w; p, diag(o?)). The variational parameters ¢ = (u, 0?) are updated according to stochas-
tic gradients of £ obtained by the reparameterization trick [Kingma and Welling, 2013].

There has been attempts to fit a matrix-variate Gaussian posterior for BNNs [Louizos and Welling,
2016, Sun et al., 2017]. Compared to overly restricted variational families, a matrix-variate Gaussian
effectively captures correlations between weights. However, computing the gradients and enforcing
the positive semi-definite constraint for 33y and ¥ make the inference challenging. Existing methods
typically impose additional structures such as diagonal covariance [Louizos and Welling, 2016] or
products of Householder transformation [Sun et al., 2017] to ensure efficient updates.

3.1 Noisy Natural Gradient

Noisy natural gradient (NNG) is an efficient method to fit multivariate Gaussian posteriors [Zhang
etal., 2017] by adding adaptive weight noise to ordinary natural gradient updates’. Assuming q(w)
is a multivariate Gaussian posterior parameterized by ¢ = (u, X) and p(w) is a spherical Gaussian,
the update rules are:

F + (1 —~ 5) F + 3 (Vw log p(y|x, w)Vy log p(y|x, w) )

N \! A\ )
pp+a (F + NnI) <VW log p(y|x, w) — NT]W)
where ) is the KL weight and 7 is the prior variance. In each iteration, NNG samples weights from
the variational posterior g,(w), which is a multivariate Gaussian with the covariance matrix:

-1
P (J;\[F-Fn_lI) (10)

However, due to computational intractability, it is necessary to impose a structured restriction to the
covariance matrix. This is equivalent to imposing the same structure to the Fisher matrix.

3.2 Fitting Matrix-Variate Gaussian Posteriors with Noisy K-FAC

Noisy K-FAC is a tractable instance of NNG with Kronecker-factored approximation to the Fisher.
Because imposing a structured approximation to the covariance is equivalent to imposing the same
structure to the Fisher matrix, noisy K-FAC enforces a Kronecker product structure to the covariance
matrix. It efficiently fits the matrix-variate Gaussian posterior. The posterior covariance is given by

-1
¥ =(Qs®Qa) (Z;\](As ®AA) + 77_11> (Qs ®Qa) "

1 -1 Y
A 1 A [ A

where 7 is a scalar constant introduced by Martens and Grosse [2015] in the context of damping to
keep a compact representation of the Kronecker product. The pseudo-code for noisy K-FAC is given
in Appendix D. In comparison to existing methods that fit MVG posteriors [Sun et al., 2017, Louizos
and Welling, 2016], noisy K-FAC does not assume additional approximations.

4 Methods

While matrix-variate Gaussian posterior efficiently captures correlations between different weights,
the diagonal variance in K-FAC eigenbasis is not optimal. K-FAC diagonal re-scaling factor Ag ® A a
does not match the second moment along the associated eigenvector E[((Qs ® Qa) ' Vw)?].

We develop a new tractable instance of noisy natural gradient. It keeps track of the diagonal variance
in K-FAC eigenbasis, resulting in a more flexible posterior distribution. In the context of NNG,
imposing a structural restriction to the Fisher matrix F' is equivalent to imposing the same restriction

2Khan et al. [2018] also found the relationship between natural gradient and variational inference and derived
VAdam by adding weight noise to Adam, which is similar to noisy Adam in Zhang et al. [2017].



Algorithm 1 Noisy EK-FAC. A subscript [ denotes the index of a layer, w; = vec(W)), and
p; = vec(M;). We assume zero momentum for simplicity. @ denotes element-wise division and
r] = diag(R}). unvec(-) is an inverse of vec(-) operation i.e. vec(A) = a and unvec(a) = A.
Differences from standard EK-FAC are shown in blue.

Require: «: stepsize
Require: [3: exponential moving average parameter for covariance factors
Require: w: exponential moving average parameter for re-scaling factor
Require: )\, 7, v.x : KL weighting, prior variance, extrinsic damping term
Require: Tiiats, Toig, Ticale: Stats, eigendecomposition, and re-scaling update intervals.
k < 0 and initialize {ge,}2 |, {Si} £, {A ) {RGE,
Calculate the intrinsic damping term i, = N%], total damping term ¥ = Vin + Yex
while stopping criterion not met do
k+—k+1
W, ~ SMN(M], A, Sy, %[R;ﬁ"]fl)
if £ = 0 (mod T;.ts) then
Update the covariance factors {S;}/,, {A;};7," using eq. (12)
end if
if £ = 0 (mod T}ca1) then
Update the re-scaling factor {R;}~_, using eq. (12)
end if
if £ = 0 (mod T, ) then
Compute the eigenbasis Qgs, and Q4, using eq. (5).
end if
Vi = Vw, logp(ylx, w) —vin - W,
M, < M; + aQa,[(Q4, ViQs,) @ unvec(r])]Qg, {Derivation is shown in Appendix C}
end while

to the variational posterior. For example, noisy K-FAC imposes a Kronecker product structure to the
covariance matrix as shown in equation (11).

Given these insights, building a flexible variational posterior boils down to finding an improved
approximation of the Fisher matrix. We adopt EK-FAC method, which is provably a better approxi-
mation of the Fisher matrix than K-FAC. We term the new BNN training method noisy EK-FAC.

EK-FAC uses eigenvalue corrected Kronecker-factored approximation to the Fisher matrix as de-
scribed in equation (7). For each layer, it estimates A, S, and R online using exponential moving
averages. Conveniently, this resembles the exponential moving average updates for the noisy natural
gradient in equation (9).

A<+ (1-B)A+ faa’
S « (1— 3)S + BV log p(ylx, w) Vs log p(y|x, w) " (12)
R+ (1-0)R;i+0[(Qs®Qa)  Vuw 1ogp(y|x,w)]j

where £ is the learning rate for Kronecker factors and w is the learning rate for the diagonal re-scaling
factor.

~p
~p

We introduce an eigenvalue corrected matrix-variate Gaussian (EMVG) posterior shown in Figure 1.
An EMVG is a generalization of a multivariate Gaussian distribution with the following form:

5MN(W, Ma 217 223 R) = N(VCC(W); VeC(M)7 (QE1 ® QE2)R(Q21 ® QE2)T) (13)

An EMVG posterior is potentially powerful because it not only compactly represents covariances
between weights but also computes a full diagonal variance in K-FAC eigenbasis. Applying EK-FAC
approximation into equation (10) yields an EMVG posterior. Therefore, we factorize the covariance
matrix in the same sense EK-FAC approximates the Fisher matrix:

¥ = % (Qs®Qa)(R") ' (Qs®Qa)’
\ \ _ (14)
= N(Qs ®Qa) (R + N771> (Qs®Qa)’



where -y is an intrinsic damping term. Since the damping NinI does not affect K-FAC eigenbasis, we

explicitly represent the damping term in the re-scaling matrix. In practice, it may be advantageous to
add extrinsic damping to the re-scaling matrix for the stable training process.

The only difference from standard EK-FAC is that the weights are sampled from the variational
posterior g. We can interpret noisy EK-FAC in the sense that p is a point estimate of the weights and
3 is the covariance of correlated Gaussian noise for each training examples. The full algorithm is
described in alg. 1.

The inference is efficient because the covariance matrix is factorized with three small matrices
AS, and R. We can use the following identity to compute Kronecker products efficiently: (A ®
B)vec(X) = vec(BXAT).

5 Related Work

Variational inference was first applied to neural networks by Peterson [1987] and Hinton and
Van Camp [1993]. Then, Graves [2011] proposed a practical method for variational inference
with fully factorized Gaussian posteriors which uses a simple (but biased) gradient estimator. Im-
proving on this work, Blundell et al. [2015] proposed an unbiased gradient estimator using the
reparameterization trick of Kingma and Welling [2013]. Several non-Gaussian variational posteriors
have also been proposed such as Multiplicative Normalizing Flows [Louizos and Welling, 2017] and
implicit distributions [Shi et al., 2018]. Neural networks with dropout were also interpreted as BNNs
[Gal and Ghahramani, 2016, Gal et al., 2017].

A few recent works explored structured covariance approximations by exploiting the relationship
between natural gradient and variational inference. Both Zhang et al. [2017] and Khan et al. [2018]
used a diagonal Fisher approximation in natural gradient VI, obtaining a fully factorized Gaussian
posterior. Zhang et al. [2017] also proposed an interesting extension by using K-FAC, which leads to
a matrix-variate Gaussian posterior. Concurrently, Mishkin et al. [2018] adopted a "diagonal plus
low-rank" approximation. This method shares the same spirit as this work. However, their low rank
approximation is computationally expensive and thus only applied to two-layer (shallow) neural
networks.

6 Experiments

In order to empirically evaluate the proposed method, we test under two scenarios, regression
and classification, to investigate the following questions. (1) Does noisy EK-FAC have improved
prediction performance compared to existing methods? (2) Is it able to scale to large dataset and
modern convolution neural network architecture?

6.1 Regression

Training ELBO - Kin8nm
0.6

We evaluate our method on standard BNN
benchmarks from UCI collections [Dheeru and 5 " 4
Karra Taniskidou, 2017], adopting evaluation
protocols from Herndandez-Lobato and Adams ~ °* ) ) ot
[2015]. In particular, we introduce a Gamma ., -
prior p(y) = Gam(ag = 6,by = 6) for the

precision of Gaussian likelihood and include a  °2 T oy KFAC
Gamma posterior p(y) = Gam(a”, 37) into the | T Nolsy EKcFAC
Varlatlonal ObJCCthC. 0 15000 30000 45000 60000 75000

Iterations

We randomly split training (90%) and test (10%) Figure 3: Training curve for all three methods. Note
data. To reduce the randomness, we repeat the that BBB, noisy K-FAC, and noisy EK-FAC use FFG,
splitting 10 times, except for two largest datasets. MVG, EMVG accordingly. EMVG has the most flexible
"Year" and "Protein" are repeated 1 and 5 times. variational posterior distribution.

During training, we normalize input features and training targets to zero mean and unit variance. We
do not adopt this normalization at test time. All experiments train a network with a single hidden
layer with 50 units except for "Protein" and "Year" datasets, which have 100 hidden units. We use
batch size of 10 for smaller datasets, 100 for larger datasets, and 500 for "Year" dataset. To stabilize



Table 1: Average RMSE and log-likelihood in test data for UCI regression benchmarks.

TEST RMSE TEST LOG-LIKELIHOOD
DATASET BBB Noisy AbAM  Noisy K-FAC  Noisy EK-FAC BBB Noisy AbAM  Noisy K-FAC  Noisy EK-FAC
BOSTON 3.171+0.149  3.03140.155 2.742+0.015 2.527+0.158 -2.602+0.031 -2.558+0.032 -2.409+0.047  -2.378+0.044
CONCRETE 5.678+0.087 5.6134+0.113  5.01940.127 4.880+0.120 -3.149+0.018  -3.145+0.023 -3.039+0.025  -3.002+0.025
ENERGY 0.565+0.018 0.839+0.046  0.485+0.019 0.497+0.023 -1.5004+0.006  -1.6294+0.020 -1.421+0.004  -1.448+0.004
KIN8NM 0.080£0.001  0.079+0.001  0.076+0.001 0.076:0.000 1.111+0.007 1.112+0.008 1.148+0.007 1.149+0.012
NAVAL 0.000£0.000 0.001+0.000  0.000+0.000 0.000£0.000 6.143+£0.032  6.231£0.041 7.079+0.034 7.287+0.002
Pow. PLANT 4.023+0.036 4.002+0.039  3.886+0.041 3.895+0.053 -2.807+0.010 -2.803+0.010 -2.776+0.012  -2.774+0.012
PROTEIN 4.321+0.017 4.380+0.016  4.09740.009 4.042+0.027 -2.882+0.004 -2.896+0.004 -2.836+0.002  -2.819+0.007
WINE 0.643+0.012  0.644+0.011 0.637£0.011 0.635+0.013 -0.977+0.017 -0.976+0.016 -0.969+0.014 -0.964+0.002
YACHT 1.174+0.086  1.2894+0.069 0.979+0.077 0.974+0.116 -2.408+0.007 -2.412+0.006 -2.316+£0.006  -2.224+0.007
YEAR 9.076NA 9.071£NA 8.885+NA 8.642tNA -3.614£NA -3.620+NA -3.595£NA -3.573+NA

the training, we re-initialize the re-scaling matrix every 50 iterations with K-FAC eigenvalues. This is
equivalent to executing a K-FAC iteration. We found that the second moment of the gradient vector
is unstable for a small batch. We amortize the basis update to ensure re-scaling matrix matches the
eigenbasis, setting Tei; = 5. For learning rates, we use o = 0.01, 8 = 0.001, and w = 0.01 for all
datasets. They are decayed by 0.1 for the second half of the training.

We compare the results with Bayes by Backprop [Blundell et al., 2015], noisy Adam, and noisy
K-FAC [Zhang et al., 2017]. We report root mean square error (RMSE) and log-likelihood on the
test dataset. The results are summarized in Table 1. The evaluation result shows that noisy EK-FAC
yields a higher test log-likelihood compared to other methods. The training plot is shown in Figure 3.
Noisy EK-FAC also achieves a higher ELBO compared to noisy K-FAC.

6.2 Classification

To evaluate the scalability of the proposed Table 2: Classification accuracy on CIFAR10 with mod-
method, we train a modified VGG16 [Simonyan ified VGG16. [D] denotes data augmentation and [B]
and Zisserman, 2014] and test on CIFAR10 denotes Batch Normalization.

benchmarks [Krizhevsky, 2009]. The modi-

fied VGG16 has a half reduced number of hid-  pfethod \ Test Accuracy

den units in all layers. Similar to applying K- | | D | B [D+B
FAC on convolutional layers with Kronecker fac- SGD 81.79 | 88.35 | 85.75 | 91.39
tors [Grosse and Martens, 2016], EK-FAC can KFAC 82.39 | 88.89 | 86.86 | 92.13

be extended to convolutional layers. We com-  Noisy-KFAC | 85.52 | 89.35 | 88.22 | 92.01
pare the results with SGD (with momentum), ~ Noisy-EKFAC | 87.07 | 89.86 | 88.45 | 92.22
K-FAC, and noisy K-FAC.

We use batch size of 128 for all experiments. To reduce the computational overhead, we amortize
covariance, inverse, and re-scaling updates. Specifically, we set Tyiats = 10, Ticale = 10, and
T4ig = 200. We noticed that the amortization does not significantly impact per-iteration optimization
performance. 3 and w are set to 0.01 for both noisy K-FAC and noisy EK-FAC. We adopt batch
normalization [loffe and Szegedy, 2015] and data augmentation. We tune regularization parameter A
and prior variance 1. With data augmentation, we use a smaller regularization parameter. 7 is set to
0.1 without batch normalization and 1.0 with batch normalization.

The results are summarized in table 2. Noisy EK-FAC achieves the highest test accuracy in all settings
without introducing computational overhead. Without extra regularization tricks, noisy EK-FAC has
1.55% improvement compared to noisy K-FAC.

7 Conclusion

In this paper, we introduced a modified training method for variational Bayesian neural networks.
An eigenvalue corrected matrix-variate Gaussian extends on a matrix-variate Gaussian to represent
the posterior distribution with more flexibility. It not only efficiently captures correlations between
weights but also computes an accurate diagonal variance under K-FAC eigenbasis. For both regression
and classification evaluations, noisy EK-FAC achieves higher ELBO and test accuracy, demonstrating
its effectiveness.
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A Matrix-Variate Gaussian

A matrix-variate Gaussian distribution models a multivariate Gaussian distribution for a matrix
W e R**P,

exp(—3t[VH(W - M) TUH(W — M)])
(2m)ne/2[V|n/2[U|p/2

p(WM,U,V) = (15)

where M € R"*? is the mean, U € R"*™ is the covariance among rows and V € RP*? igs the
covariance among columns. Since U and V are covariance matrices, they are positive definite.
Vectorization of W forms a multivariate Gaussian distribution whose covariance matrix X is a
Kronecker product of V and U.

vec(W) ~ N (vec(M),V @ U) (16)

B Eigenvalue Corrected Matrix-Variate Gaussian

An eigenvalue corrected matrix-variate Gaussian is an extension of a matrix-variate Gaussian to
consider the full diagonal variance in Kronecker-factored eigenbasis.

exp(—iPTR™'P)
(2o R

p(W|M,U,V,R) = and P = vec(Q{;(W — M)Qv) (17)

R € R"X"P js the re-scaling matrix. Because covariance matrices are positive definite, diagonal
entries in R are all positive. Similar to a matrix-variate Gaussian distribution, vectorization of W
generalizes a multivariate distribution whose covariance matrix has a Kronecker structure.

vec(W) ~ N (vec(M), (Qv ® Qu) R (Qv ® Qu) ") (18)

Sampling from an eigenvalue corrected matrix-variate distribution is also a special case of sampling
from a multivariate Gaussian distribution. Let X € R™*P be a matrix with independent samples for a
standard multivariate Gaussian.

X ~ N(0,1) (19)
Then let
Y = M + Qu[X © unvec(y1)|Qv, (20)
where /r = y/diag(R), ® is an element-wise multiplication, and unvec(-) is an inverse of vec(-)
operation.

C Derivation of EK-FAC Update

Let V € R™*P be the weight gradient, A € R™*" the covariance matrix of input activations, and
S € RP*P the covariance matrix of output pre-activations. R € R"P*"? is the diagonal re-scaling
matrix in K-FAC eigenbasis: Qg ® QAa . The following is the derivation of EK-FAC update shown in
alg. 1.

(Qs ®Qa)R™ (Qs ® Qa) ' vec(V) = (Qs ® Qa) R (Qg ® Q4 ) vee(V)
=(Qs ® Qa) R 'vec (QAVQs)

(Qs ® Qa) vec((Qa, ViQs,) © unvec(r;))
= vec(Qa[(QAVQs) @ unvec(r)]Qg)

21

where r = diag(R), @ is an element-wise division, and unvec(-) is an inverse of vec(-) operation.
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D Pseudo-Code for Noisy K-FAC

Algorithm 2 Noisy K-FAC. A subscript [ denotes the index of a layer, w; = vec(W;), and pu; =
vec(M;). We assume zero momentum for simplicity. Differences from standard K-FAC are shown in
blue.
Require: «: stepsize
Require: [3: exponential moving average parameter for covariance factors
Require: )\, n, v : KL weighting, prior variance, extrinsic damping term
Require: Tgias, Tiny: Stats and inverse update intervals.
k < 0 and initialize {p;} = |, {Si},, {AZ}ZL:_Ol, {R},
Calculate the intrinsic damping term i, = N%], total damping term v = Vin + Vex
while stopping criterion not met do
k+—k+1
Wi~ MN (M, 3 [A]71 [
if £ = 0 (mod Ti;ats) then
Update the covariance factors {S;}/,, {A;}/," using eq. (12)
end if
if £ = 0 (mod T;,,) then
Compute the inverses {[S]]~'}5,, {[A]] "'}, using eq. (11).
end if
V= Vw, log p(y|x, w) — yin - W,
M; + M, + a[A?]_lVl [S?]_l
end while
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