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1 Introduction

Following the influential work by (Kingma & Welling, 2013; Rezende et al., 2014), deep generative
models with latent variables have been widely used to model data such as natural images (Rezende &
Mohamed, 2015; Kingma et al., 2016; Chen et al., 2016; Gulrajani et al., 2016), speech and music
time-series (Chung et al., 2015; Fraccaro et al., 2016; Krishnan et al., 2015), and video (Babaeizadeh
et al., 2017; Ha & Schmidhuber, 2018; Denton & Fergus, 2018). Generally, marginalizing the latent
variables is intractable, so instead of directly maximizing the marginal likelihood, a common approach
is to maximize a tractable lower bound on the likelihood such as the variational evidence lower bound
(ELBO) (Jordan et al., 1999; Blei et al., 2017).

Burda et al. (2015) introduced a multi-sample bound, IWAE, that is at least as tight as the ELBO
and becomes increasingly tight as the number of samples increases. Counterintuitively, although
the bound is tighter, Rainforth et al. (2018) theoretically and empirically showed that the standard
inference network gradient estimator for the IWAE bound performs poorly as the number of samples
increases due to a diminishing signal-to-noise ratio (SNR).

Roeder et al. (2017) proposed a lower-variance estimator of the gradient of the IWAE bound. We show
that their estimator is biased, but that it is possible to construct an unbiased estimator with a second
application of the reparameterization trick which we call the IWAE doubly reparameterized gradient
(DReG) estimator. Our estimator is an unbiased, computationally efficient drop-in replacement, and
does not suffer as the number of samples increases, resolving the counterintuitive behavior from
previous work (Rainforth et al., 2018). Furthermore, our insight is applicable to alternative multi-
sample training techniques for latent variable models: reweighted wake-sleep (RWS) (Bornschein &
Bengio, 2014) and jackknife variational inference (JVI) (Nowozin, 2018).

In this work, we derive DReG estimators for IWAE, RWS, and JVI and demonstrate improved scaling
with the number of samples on a simple example. Then, we evaluate DReG estimators on MNIST
generative modeling, Omniglot generative modeling, and MNIST structured prediction tasks. In
all cases, we demonstrate substantial unbiased variance reduction, which translates to improved
performance over the original estimators.

2 Background

Our goal is to learn a latent variable generative model pθ(x, z) = pθ(z)pθ(x|z) where x are observed
data and z are continuous latent variables. We maximize a variational lower bound on log pθ(x) such
as the ELBO

log pθ(x) = logEpθ(z)[pθ(x|z)] ≥ Eq(z|x)
[
log

pθ(x, z)

q(z|x)

]
, (1)

Implementation of DReG estimators and code to reproduce experiments: sites.google.com/view/dregs.
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where q(z|x) is a variational distribution. Following the influential work by (Kingma & Welling,
2013; Rezende et al., 2014), we consider the amortized inference setting with an inference network
qφ(z|x). Burda et al. (2015) introduced the importance weighted autoencoder (IWAE) bound

Ez1:K

[
log

(
1

K

K∑
i=1

pθ(x, zi)

qφ(zi|x)

)]
≤ log pθ(x), (2)

with z1:K ∼
∏
i qφ(zi|x). The IWAE bound reduces to the ELBO when K = 1, is non-decreasing

as K increases, and converges to log pθ(x) as K →∞ under mild conditions (Burda et al., 2015).
When qφ is reparameterizable1, the standard gradient estimator of the IWAE bound is

∇θ,φEz1:K

[
log

(
1

K

K∑
i=1

wi

)]
= ∇θ,φEε1:K

[
log

(
1

K

K∑
i=1

wi

)]
= Eε1:K

[
K∑
i=1

wi∑
j wj
∇θ,φ logwi

]

where wi = pθ(x, zi)/qφ(zi|x). A single sample estimator of this expectation is typically used as the
gradient estimator.

As K increases, the bound becomes increasingly tight, however, Rainforth et al. (2018) show that
the signal-to-noise ratio (SNR) of the inference network gradient estimator goes to 0. This does not
happen for the model parameters (θ). Following up on this work, Le et al. (2018) demonstrate that
this deteriorates the performance of learned models on practical problems. This motivates the search
for lower variance inference network gradient estimators.

To derive improved gradient estimators for φ, it is informative to expand the total derivative2 of the
IWAE bound with respect to φ

Eε1:K

[
K∑
i=1

wi∑K
j=1 wj

(
− ∂

∂φ
log qφ(zi|x) +

∂ logwi
∂zi

dzi
dφ

)]
. (3)

Previously, Roeder et al. (2017) found that the first term within the parentheses of Eq. 3 can contribute
significant variance to the gradient estimator. When K = 1, this term analytically vanishes in
expectation, so when K > 1 they suggested dropping it. Below, we abbreviate this estimator as STL.
As we show in Section 4.1, the STL estimator introduces bias when K > 1.

3 Doubly Reparameterized Gradient Estimators (DReGs)

Our insight is that we can estimate the first term within the parentheses of Eq. 3 efficiently with a
second application of the reparameterization trick. To see this, first note that it suffices to focus on
one of the K terms in the sum. Because the derivative is a partial derivative ∂

∂φ , it treats zi = z(εi, φ)

as a constant, so we can freely change the random variable that the expectation is over to z1:K . Now,

Ez1:K

[
wi∑
j wj

∂

∂φ
log qφ(zi|x)

]
= Ez−iEzi

[
wi∑
j wj

∂

∂φ
log qφ(zi|x)

]
, (4)

where z−i = z1:i−1,i+1:K is the set of z1:K without zi. The inner expectation resembles a REIN-
FORCE gradient term (Williams, 1992), where we interpret wi∑

j wj
as the “reward”. Now, we can use

the following well-known equivalence between the REINFORCE gradient and the reparameterization
trick gradient (See Appendix B for a derivation)

Eqφ(z|x)
[
f(z)

∂

∂φ
log qφ(z|x)

]
= Eε

[
∂f(z)

∂z

∂z(ε, φ)

∂φ

]
. (5)

1Meaning that we can express zi as z(εi, φ), where z is a deterministic, differentiable function and p(εi)
does not depend on θ or φ. This allows gradients to be estimated using the reparameterization trick (Kingma &
Welling, 2013; Rezende et al., 2014).

2logwi depends on φ in two ways: φ and zi = z(εi, φ). The total derivative accounts for both sources of
dependence and the partial derivative ∂

∂φ
considers zi as a constant.
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This holds even when f depends on φ. Typically, the reparameterization gradient estimator has lower
variance than the REINFORCE gradient estimator, which suggests using it will improve performance.
Applying the identity from Eq. 5 to the right hand side of Eq. 4 gives

Ezi

[
wi∑
j wj

∂

∂φ
log qφ(zi|x)

]
= Eεi

[
∂

∂zi

(
wi∑
j wj

)
∂zi
∂φ

]

= Eεi

[(
1∑
j wj

− wi
(
∑
j wj)

2

)
∂wi
∂zi

∂zi
∂φ

]
= Eεi

[(
wi∑
j wj

− w2
i

(
∑
j wj)

2

)
∂ logwi
∂zi

∂zi
∂φ

]
. (6)

This last expression can be efficiently estimated with a single Monte Carlo sample. When K = 1,
this term vanishes exactly and we recover the estimator proposed in (Roeder et al., 2017) for the
ELBO.

Substituting Eq. 6 into Eq. 3, we obtain a simplification due to cancellation of terms

∇φEz1:K

[
log

(
1

K

K∑
i=1

wi

)]
= Eε1:K

 K∑
i=1

(
wi∑
j wj

)2
∂ logwi
∂zi

∂zi
∂φ

 . (7)

We call the algorithm that uses the single sample Monte Carlo estimator of this expression for the
inference network gradient the IWAE doubly reparameterized gradient estimator (IWAE-DReG).
In Appendix C, we show that in contrast to the standard IWAE gradient estimator, the SNR of
the IWAE-DReG estimator exhibits the same scaling behaviour of O(

√
K) for both the generative

and inference network gradients (i.e., improving in K). Finally, we derive doubly reparameterized
gradient estimators for RWS and JVI in Appendix D.
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Figure 1: MNIST generative modeling trained according to IWAE and RWS. The bold lines are the
average over three trials, and individual trials are displayed as semi-transparent. K = 64.

4 Experiments

4.1 Toy Gaussian

We reimplemented the Gaussian example from (Rainforth et al., 2018). Consider the generative
model with z ∼ N(θ, I) and x|z ∼ N(z, I) and inference network qφ(z|x) ∼ N(Ax+b, 23I), where
φ = {A, b}. As in (Rainforth et al., 2018), we sample a set of parameters for the model and inference
network close to the optimal parameters (perturbed by zero-mean Gaussian noise with standard
deviation 0.01), then estimate the gradient of the inference network parameters for increasing number
of samples (K). We plot the SNR, the squared bias, and the variance of the gradient estimators in
Appendix Fig. 2. IWAE-DReG is unbiased, its SNR increases with K, and it has the lowest variance.
Furthermore, we can see the bias present in the STL estimator.

4.2 Generative Modeling and Structured Prediction

Training generative models of the binarized MNIST digits dataset is a standard benchmark task for
latent variable models. We used the single latent layer architecture from (Burda et al., 2015) with
additional details in Appendix A. We trained models with the IWAE gradient, the RWS wake update,
and with the JVI estimator. In all three cases, the doubly reparameterized gradient estimator reduced
variance and as a result substantially improved performance (Fig. 1 and Appendix Figs. 3,4).

Finally, we performed generative modeling with the Omniglot dataset and structured prediction
of the bottom half of an MNIST digit using the top half as the context. Again, we found that the
doubly reparameterized gradient estimator reduced variance and as a result improved test performance
(Appendix Figs. 5,6,7, and 8).
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Appendix
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Figure 2: Signal-to-noise ratios (SNR), bias squared, and variance of gradient estimators with
increasing K over 10 random trials with 1000 measurement samples per trial (mean in bold). All
dimensions of φ behaved qualitatively similarly, so for clarity, we show curves for a single randomly
chosen dimension of φ. The observed “bias” for IWAE-DReG is not statistically significant under
a paired t-test (as expected because IWAE-DReG is unbiased). IWAE-DReG is unbiased, its SNR
increases with K, and it has the lowest variance of the estimators considered here.
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Figure 3: MNIST generative modeling trained according to IWAE (left), RWS (middle), and JVI
(right). The top row compares the variance of the original gradient estimator (dashed) with the
variance of the doubly reparameterized gradient estimator (solid). The bottom row compares test
performance. The left and middle plots show the IWAE (stochastic) lower bound on the test set.
The right plot shows the JVI estimator (which is not a bound) on the test set. The bold lines are the
average over three trials, and individual trials are displayed as semi-transparent. All methods used
K = 64.

A Experiment Details

A.1 Generative modeling

The generative model used 50 Gaussian latent variables with an isotropic prior and passed z through
two deterministic layers of 200 tanh units to parameterize factorized Bernoulli outputs. The inference
network passed x through two deterministic layers of 200 tanh units to parameterize a factorized
Gaussian distribution over z. Because our interest was in improved gradient estimators and optimiza-
tion performance, we used the dynamically binarized MNIST dataset, which minimally suffers from
overfitting. We used the standard split of MNIST into train, validation, and test sets.
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Figure 4: Log-likelihood lower bounds for generative modeling on MNIST. The left and middle plots
compare performance with different number of samples K = 32, 256. The bold lines are the average
over three trials, and individual trials are displayed as semi-transparent). The right plot compares
performance as the convex combination between IWAE-DReG and RWS-DReG is varied (Eq. 10).
To highlight differences, we plot the difference between the test IWAE bound and the test IWAE
bound IWAE-DReG achieved at that step.
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Figure 5: Omniglot generative modeling trained according to IWAE (left), RWS (middle), and JVI
(right). The top row compares the variance of the original gradient estimator (dashed) with the
variance of the doubly reparameterized gradient estimator (solid). The bottom row compares test
performance. The left and middle plots show the IWAE (stochastic) lower bound on the test set.
The right plot shows the JVI estimator (which is not a bound) on the test set. The bold lines are the
average over three trials, and individual trials are displayed as semi-transparent. All methods used
K = 64.

A.2 Structured prediction on MNIST

Structured prediction is another common benchmark task for latent variable models. In this task, our
goal is to model a complex observation x given a context c (i.e., model the conditional distribution
p(x|c)). We can use a conditional latent variable model pθ(x, z|c) = pθ(x|z, c)pθ(z|c), however, as
before, computing the marginal likelihood is generally intractable. It is straightforward to adapt the
bounds and techniques from the previous section to this problem.

To evaluate our method in this context, we use the standard task of modeling the bottom half of a
binarized MNIST digit from the top half. We use a similar architecture, but now learn a conditional
prior distribution pθ(z|c) where c is the top half of the MNIST digit. The conditional prior feeds
c to two deterministic layers of 200 tanh units to parameterize a factorized Gaussian distribution
over z. To model the conditional distribution pθ(x|c, z), we concatenate z with c and feed it to two
deterministic layers of 200 tanh units to parameterize factorized Bernoulli outputs.
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Figure 6: Log-likelihood lower bounds for structured prediction on Omniglot. The left plot uses
K = 64 samples and the right plot uses K = 256 samples. The bold lines are the average over three
trials, and individual trials are displayed as semi-transparent). The right plot compares performance
as the convex combination between IWAE-DReG and RWS-DReG is varied. To highlight differences,
we plot the difference between the test IWAE bound and the test IWAE bound IWAE-DReG achieved
at that step.
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Figure 7: Structured prediction on MNIST according to IWAE (left), RWS (middle), and JVI (right).
The top row compares the variance of the original gradient estimator (dashed) with the variance of
the doubly reparameterized gradient estimator (solid). The bottom row compares test performance.
The left and middle plots show the IWAE (stochastic) lower bound on the test set. The right plot
shows the JVI estimator (which is not a bound) on the test set. The bold lines are the average over
three trials, and individual trials are displayed as semi-transparent. All methods used K = 64.

B Equivalence between REINFORCE gradient and reparameterization
trick gradient

Given a function f(z, φ), we have

Eqφ(z)
[
f(z, φ)

∂ log qφ(z)

∂φ

]
= Eε

[
∂f(z, φ)

∂z

∂z(ε, φ)

∂φ

]
,

for a reparameterizable distribution qφ(z). To see this, note that

d

dφ

∫
z

qφ(z)f(z, φ) dz =

∫
z

∂

∂φ
qφ(z)f(z, φ) dz =

∫
z

f(z, φ)
∂

∂φ
qφ(z) + qφ(z)

∂

∂φ
f(z, φ) dz

=

∫
z

f(z, φ)qφ(z)
∂ log qφ(z)

∂φ
dz + Eqφ(z)

[
∂f(z, φ)

∂φ

]
= Eqφ(z)

[
f(z, φ)

∂ log qφ(z)

∂φ

]
+ Eqφ(z)

[
∂f(z, φ)

∂φ

]
,
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Figure 8: Log-likelihood lower bounds for structured prediction on MNIST. The left plot usesK = 64
samples and the right plot uses K = 256 samples. The bold lines are the average over three trials,
and individual trials are displayed as semi-transparent). The right plot compares performance as
the convex combination between IWAE-DReG and RWS-DReG is varied (Eq. 10). To highlight
differences, we plot the difference between the test IWAE bound and the test IWAE bound IWAE-
DReG achieved at that step.

via the REINFORCE gradient. On the other hand,

d

dφ

∫
z

qφ(z)f(z, φ) dz =
d

dφ
Eqφ(z) [f(z, φ)] =

d

dφ
Eε [f(z(ε, φ), φ)] = Eε

[
d

dφ
f(z(ε, φ), φ)

]
= Eε

[
∂f(z, φ)

∂z

∂z(ε, φ)

∂φ

]
+ Eε

[
∂f(z, φ)

∂φ

∣∣∣
z=z(ε,φ)

]
= Eε

[
∂f(z, φ)

∂z

∂z(ε, φ)

∂φ

]
+ Eqφ(z)

[
∂f(z, φ)

∂φ

]
,

via the reparameterization trick. Thus, we conclude that

Eqφ(z)
[
f(z, φ)

∂ log qφ(z)

∂φ

]
+Eqφ(z)

[
∂f(z, φ)

∂φ

]
= Eε

[
∂f(z, φ)

∂z

∂z(ε, φ)

∂φ

]
+Eqφ(z)

[
∂f(z, φ)

∂φ

]
,

from which the identity follows.

C Informal asymptotic analysis

At a high level, Rainforth et al. (2018) show that the expected value of the IWAE gradient of the
inference network collapses to zero with rate 1/K, while its standard deviation is only shrinking at a
rate of 1/

√
K. This is the essence of the problem that results in the SNR (expectation divided by

standard deviation) of the inference network gradients going to zero at a rate O((1/K)/(1/
√
K)) =

O(1/
√
K), worsening with K. In contrast, Rainforth et al. (2018) show that the generation network

gradients scales like O(
√
K), improving with K.

Because the IWAE-DReG estimator is unbiased, we cannot hope to change the scaling of the expected
value in K, but we can hope to change the scaling of the variance. In particular, in this section, we
provide an informal argument, via the delta method, that the standard deviation of IWAE-DReG
scales like K−3/2, which results in an overall scaling ofO(

√
K) for the inference network gradient’s

SNR (i.e., increasing with K). Thus, the SNR of the IWAE-DReG estimator improves similarly in K
for both inference and generation networks.

We will appeal to the delta method on a two-variable function g : R2 → R. Define the following
notation for the partials of g evaluated at the mean of random variables X,Y ,

gx(X,Y ) =
∂g(x, y)

∂x

∣∣∣∣
(x,y)=(E(X),E(Y ))

The delta method approximation of Var(g(X,Y )) is given by (Section 5.5 of Casella & Berger),

Var(g(X,Y )) ≈ gx(X,Y )2Var(X) + 2gx(X,Y )gy(X,Y )Cov(X,Y ) + gy(X,Y )2Var(Y )

Now, assume without loss of generality that φ is a single real-valued parameter. Let ui =

w2
i
∂ logwi
∂zi

∂zi
∂φ , X =

∑K
i=1 ui, and Y =

∑K
i=1 wi. Let g(X,Y ) = X/Y 2, then g(X,Y ) is the
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IWAE-DReG estimator whose variance we seek to understand. Letting Z = E(wi) and U = E(ui)
we get in this case after cancellations,

Var(g(X,Y )) ≈ 1

Z4

Var(X)

K4
− 4U

Z5

Cov(X,Y )

K4
+

4U2

Z6

Var(Y )

K4

Because wi are all mutually independent, we get Var(Y ) = KVar(wi). Similarly for Var(X)
and ui. Because the wi and ui are identically distributed and independent for i 6= j, we have
Cov(X,Y ) = KCov(wi, ui). All together we can see that Var(g(X,Y )) scales like K−3. Thus,
the standard deviation scales like K−3/2.

D Alternative training algorithms

Now, we review alternative training algorithms for deep generative models and derive their doubly
reparameterized versions.

D.1 Reweighted Wake Sleep (RWS)

Bornschein & Bengio (2014) introduced RWS, an alternative multi-sample update for latent variable
models that uses importance sampling. Computing the gradient of the log marginal likelihood

∇θ log pθ(x) =
∇θ
∫
z
pθ(x, z) dz

pθ(x)
=

∫
z
pθ(x, z)∇θ log pθ(x, z) dz

pθ(x)
= Epθ(z|x) [∇θ log pθ(x, z)] ,

requires samples from pθ(z|x), which is generally intractable. We can approximate the gradient with
a self-normalized importance sampling estimator

Epθ(z|x) [∇θ log pθ(x, z)] ≈ Ez1:K

[∑
i

wi∑
j wj
∇θ log pθ(x, zi)

]
,

where z1:K ∼
∏
i qφ(zi|x). Interestingly, this is precisely the same as the IWAE gradient of θ, so the

RWS update for θ can be interpreted as maximizing the IWAE lower bound in terms of θ. Instead of
optimizing a joint objective for p and q, RWS optimizes a separate objective for the inference network.
(Bornschein & Bengio, 2014) propose a “wake” update and a “sleep” update for the inference network.
Le et al. (2018) provide empirical support for solely using the wake update for the inference network,
so we focus on that update.

The wake update approximately minimizes the KL divergence from pθ(z|x) to qφ(z|x). The gradient
of the KL term is

∇φEpθ(z|x) [log pθ(z|x)− log qφ(z|x)] = −Epθ(z|x)
[
∂

∂φ
log qφ(z|x)

]
.

The wake update of the inference network approximates the intractable expectation by self-normalized
importance sampling

− Epθ(z|x)
[
∂

∂φ
log qφ(z|x)

]
≈ −Ez1:K

[∑
i

wi∑
j wj

∂

∂φ
log qφ(zi|x)

]
, (8)

with zi ∼ qφ(zi|x). Le et al. (2018) note that this update does not suffer from diminishing SNR as K
increases. However, a downside is that the updates for p and q are not gradients of a unified objective,
so could potentially lead to instability or divergence.

Doubly Reparameterized Reweighted Wake update

The wake update gradient for the inference network (Eq. 8) can be reparameterized

− Ez1:K

[∑
i

wi∑
j wj

∂

∂φ
log qφ(zi|x)

]
= Eε1:K

[∑
i

(
w2
i

(
∑
j wj)

2
− wi∑

j wj

)
∂ logwi
∂zi

∂zi
∂φ

]
.

(9)
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We call the algorithm that uses the single sample Monte Carlo estimator of this expression as the
wake update for the inference network RWS-DReG.

Interestingly, the inference network gradient estimator from (Roeder et al., 2017) can be seen as
the sum of the IWAE gradient estimator and the wake update of the inference network (as the wake
update minimizes, we add the negative of Eq. 9). Their positive results motivate further exploration
of convex combinations of IWAE-DReG and RWS-DReG

Eε1:K

[∑
i

(
α

wi∑
j wj

+ (1− 2α)
w2
i

(
∑
j wj)

2

)
∂ logwi
∂zi

∂zi
∂φ

]
. (10)

We refer to the algorithm that uses the single sample Monte Carlo estimator of this expression as
DReG(α). When α = 1, this reduces to RWS-DReG, when α = 0, this reduces to IWAE-DReG and
when α = 0.5, this reduces STL.

D.2 Jackknife Variational Inference (JVI)

Alternatively, Nowozin (2018) reinterprets the IWAE lower bound as a biased estimator for the log
marginal likelihood. He analyzes the bias and introduces a novel family of estimators, Jackknife
Variational Inference (JVI), which trade off reduction in bias for increased variance. This additional
flexibility comes at the cost of no longer being a stochastic lower bound on the log marginal likelihood.
The first-order JVI has significantly reduced bias compared to IWAE, which empirically results in a
better estimate of the log marginal likelihood with fewer samples (Nowozin, 2018). For simplicity,
we focus on the first-order JVI estimator

K × Ez1:K

[
log

(
1

K

∑
i

wi

)]
− K − 1

K

∑
i

Ez−i

log

 1

K − 1

∑
j 6=i

wj

 .
It is straightforward to apply our approach to higher order JVI estimators.

Doubly Reparameterized Jackknife Variational Inference (JVI)

The JVI estimator is a linear combination of K and K − 1 sample IWAE estimators, so we can use
the doubly reparameterized gradient estimator (Eq. 7) for each term.

E Unified Surrogate Objectives for Estimators

In the main text, we assumed that θ and φ were disjoint, however, it can be helpful to share parameters
between p and q (e.g., (Fraccaro et al., 2016)). With the IWAE bound, we differentiate a single
objective with respect to both the p and q parameters. Thus it is straightforward to adapt IWAE and
IWAE-DReG to the shared parameter setting. In this section, we discuss how to deal with shared
parameters in RWS.

Suppose that both p and q are parameterized by θ. If we denote the unshared parameters of q by
φ, then we can restrict the RWS wake update to only φ. Alternatively, with a modified RWS wake
update, we can derive a single surrogate objective for each scenario such that taking the gradient with
respect to θ results in the proper update. For clarity, we introduce the following modifier notation for
pθ(x, zi), qθ(zi|x), and wi which are functions of θ and zi = z(θ, εi). We use X̃ to mean X with
stopped gradients with respect to zi, X̂ to mean X with stopped gradients with respect to θ (but not θ
is not stopped in z(θ, εi)), and X̄ to mean X with stopped gradients for all variables. Then, we can
use the following surrogate objectives:

IWAE:

LIWAE(θ) = Eε1:K

[
K∑
i=1

w̄i∑
j w̄j

logwi

]
(11)

DReG IWAE:

LDReG−IWAE(θ) = Eε1:K

 K∑
i=1

w̄i∑
j w̄j

log p̃θ(x, zi) +

(
w̄i∑
j w̄j

)2

log ŵi

 (12)
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RWS:

LRWS(θ) = Eε1:K

[
K∑
i=1

w̄i∑
j w̄j

(log p̃θ(x, zi) + log q̃θ(zi|x))

]
(13)

DReG RWS:

LDReG−RWS(θ) = Eε1:K

 K∑
i=1

w̄i∑
j w̄j

log p̃θ(x, zi) +

 w̄i∑
j w̄j

−

(
w̄i∑
j w̄j

)2
 log ŵi

 (14)

STL:

LSTL(θ) = Eε1:K

[
K∑
i=1

w̄i∑
j w̄j

(log p̃θ(x, zi) + log ŵi)

]
(15)

DReG(α):

LDReG(α)(θ) = Eε1:K

 K∑
i=1

w̄i∑
j w̄j

log p̃θ(x, zi) +

α w̄i∑
j w̄j

+ (1− 2α)

(
w̄i∑
j w̄j

)2
 log ŵi


(16)

The only subtle difference is that DReG(α = 0.5) does not correspond exactly to STL due to the
scaling between terms:

LDReG(α=0.5)(θ) = Eε1:K

[
K∑
i=1

w̄i∑
j w̄j

(log p̃θ(x, zi) + 0.5 log ŵi)

]
(17)
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