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Abstract

A large collection of time series poses significant challenges for classical and neural
forecasting approaches. Classical time series models fail to fit data well and to scale
to large problems, but succeed at providing uncertainty estimates. The converse
is true for deep neural networks. In this paper, we propose a hybrid model that
incorporates the benefits of both approaches. Our new method is data-driven and
scalable via a latent, global, deep component. It also handles uncertainty through
a local classical Gaussian Process model. Our experiments demonstrate that our
method obtains higher accuracy than state-of-the-art methods.

1 Introduction

Some prevalent forecasting methods in statistics and econometrics have been developed for forecasting
individual or small groups of time series. These methods consist of complex models designed and
tuned by domain experts [1]]. Recently, there has been a paradigm shift from model-based to fully-
automated data-driven approaches. This shift can be attributed to the availability of large and diverse
time series datasets in a wide variety of fields [2]. A substantial amount of data consisting of past
behavior of related time series can be leveraged for making a forecast for an individual time series.
Use of data from related time series allows for fitting of more complex and potentially more accurate
models without overfitting.

Classical time series methods, such as Autoregressive Integrated Moving Average (ARIMA) [3l],
exponential smoothing [4] and general Bayesian time series [3]], excel at modeling the complex
dynamics of individual time series of sufficiently long history. These methods are computationally
efficient, e.g. via a Kalman filter, and provide uncertainty estimates. Uncertainty estimates are critical
for optimal downstream decision making. These methods are local, that is, they learn one model per
time series. As a consequence, they cannot effectively extract information across multiple time series.
These classical methods also have challenges with cold-start problems, where more time series are
added or removed over time.

Deep neural networks (DNNG5), in particular, recurrent neural networks (RNNs), such as LSTMs [6]]
have been successful in time series forecasting [7 [8]. DNNs are generally effective at extracting
patterns across multiple time series. Without a combination with probabilistic methods, such as
variational dropout [9] and deep Kalman filters [[10], DNNs can be prone to overfitting and have
challenges in modeling uncertainty [[11].

The combination of probabilistic graphical models with deep neural networks has been an active
research area recently [10, 12,13} [14]. In the time series forecasting domain, a recent example is [15]],
where the authors combine RNNs and State-Space Models (SSM) for scalable time series forecasting.
Our work in this paper follows a similar theme: we propose a novel and scalable global-local method,
Deep Factors with Gaussian Processes. It is based on a global DNN backbone and local Gaussian
Process (GP) model for computational efficiency. The global-local structure extracts complex non-
linear patterns globally while capturing individual random effects for each time series locally. The
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main idea of our approach is to represent each time series as a combination of a global time series
and a corresponding local model. The global part is given by a linear combination of a set of deep
dynamic factors, where the loading is temporally determined by attentions. The local model is a
stochastic Gaussian Process (GP), which allows for the uncertainty to propagate forward in time.

2 Deep Factor Model with Gaussian Processes

We first define the forecasting problem that we are aiming to solve. Let X C IR¢ denote the input
features space and Z C IR the space of the observations. We are given a set of IV time series with the
i™ time series consisting of (¢, 2;;) € X x Z,t =1,--- , T, where x, ; are the input co-variates,
and z; ; is the corresponding observation at time ¢. Given a forecast horizon 7 € N, our goal is to
calculate the joint predictive distribution of future observations,

p({zi,T+1:T+T}£il |{%‘,T+1;T+r}£\;1, {Di}é\;ﬂy

where D; = {(z;, z;)} denotes the i'" time series with corresponding features. For concreteness, we
restrict ourselves to univariate time series (k = 1).

2.1 Generative Model

We assume that each time series z; is governed by the following two components: fixed and random.

Fixed effects are common patterns that are given by linear combina-
tions of K latent global deep factors, g;, ;. These deep factors can be
Zit thought of as dynamic principal components or eigen time series that
drive the underlying dynamics of all the time series.

@ Random effects, r;, are the local fluctuations that are chosen to be the
Vad Gaussian Process [16], i.e., ; ~ GP(0, XC;(-,-)), where the covari-

@ @ ance K; is a kernel matrix and r; ; = r;(z;,,).

The observed value z; ; at time ¢, or more generally, its latent function
u; ¢ such that z;; ~ p(-|u; ¢(z;+)), can be expressed as a sum of
the weighted average of the global patterns and its local fluctuations.
The summary of this generative model is given in Eqn. (), and is

I 1V
illustrated in Figure For simplicity, we consider w7(:1:”) = w; to
be the embedding of time series i.

Tt

Figure 1: Plate graph of the random effect :  r; ~ GP(0, (-, -)),

proposed Deep Factors with . ' 1
Gaussian Processes model. fixed 'eff.ect b i =i ge(wi), M
The diamond nodes represent emission : iy ~ p(-|uie), wip = fip +riz.

deterministic states. . .
We use a global dynamics factors RNN or a set of K univariate-

valued RNNSs to generate g; € IR”. The RNNs are learned globally
to capture the common patterns from all time series. For each time series at time ¢, we use attention
networks to assign stationary attentions w; € IR* to the dynamic factors g;. This determines the
group of the global factors to focus on and the relevant segment of histories. At a high level, the
weighting gives temporal attention to different global factors.

2.2 Inference and Learning

Given a set of N time series generated by Eqn. (I)), our goal is to estimate ©, the parameters in
the global RNNS, attention network and the hyperparameters in the kernel function. To do so, we
use maximum likelihood estimation, where ® = argmax ), log p(z;), Computing the marginal
likelihood may require doing inference over the latent variables. In our case, p(-|u; ;) is Gaussian,
and the marginal likelihood can be computed easily as,

p(zi) = N(fi, Ki + o71).

For non-Gaussian likelihoods, classical techniques, such as Box-Cox transform [17]] or variational
inference in the framework of Variational Auto Encoder (VAE) [18. [19], can be used. This is a
direction of future work.



3 Experiments

The model is implemented in MXNet Gluon [20] with a RBF kernel [23]] using the mxnet.linalg
library [21}122]. We use a p3.4xlarge SageMaker instance in all our experiments. The global factor
network is chosen to be LSTM with 1 hidden layer and 50 hidden units. We fix the number of factors
to be 10.

To assess the quality of the proposed model, we limit the training, sometimes artificially by pruning
the data, to only one week of time series. This results in 168 observations per time series. Figures
[2a{2b] show that the forecasts qualitatively on the publicly available datasets electricity and
traffic from the UCI data set [24, [25]].
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Figure 2: The dashed orange curve shows the forecast of the proposed global LSTM with GP local
model. The black vertical line marks the division between the training and prediction regions.

We use the quantile loss to evaluate the probabilistic forecast. For a given quantile p € (0, 1), a target
value z; and p-quantile prediction Z;(p), the p-quantile loss is defined as

QLp[Zta Et(p)} =2 [p(Zt - Et(p))HZt—’Z\t(P)>O =+ (1 - p)(zt(p) - Zt)]IZt—Qf,(p)gO] .
We use a normalized sum of quantile losses, >, , QL,[zi, i t(p)]/ D2, ; |i], to compute the
quantile losses for a given span across all time series. We include results for p = 0.5, 0.9, which we
abbreviate as the PSOQL (mean absolute percentage error (MAPE)) and P90QL, respectively. We also
report the root mean square error (RMSE), which is the square root of the aggregated squared error
normalized by the product of number of time series and the length of the time series in the evaluation
segment.

Table[I]compares with DeepAR (DA), a state-of-art RNN-based forecasting algorithm on the publicly
available AWS SageMaker [7,26] and Prophet (P), a Bayesian structural time series model [27].
To ensure a fair comparison, we set DeepAR to have the same 1-layer 50 hidden units network
configuration, with the number of epochs set to be 2000. The results show that our model outperforms
the others, in particular with respect to the P90 quantile loss. This shows that we are better at capturing
uncertainty.

\ P50QL P90QL RMSE
PS | HRZN I px——Pp DFGP| DA P  DFGP | DA P DFGP
clec | 34 0216 0149 0109 [ 0.182 0103 0061 | 1194421 902724 745175
24hr | 0132 0.124 0.103 | 0.100 0.091 0.074 | 2100927 783.598 454.307
ras | 34 [ 0348 0457 0137 [ 0162 0207 0.093 0.028 0032  0.021
24hr | 0268 0380 0.131 | 0.149 0.191  0.090 0.024 0028  0.019

Table 1: Results for short-term (3-day forecast) and near-term (24-hour forecast) scenario with one
week of training data on electricity, traffic.

4 Conclusion

We propose a novel global-local model, Deep Factors with Gaussian Processes, for forecasting a
collection of related time series. Our method differs from other global-local models by combining



classical Bayesian probabilistic models with deep learning techniques that scale. We show promising
experiments that demonstrate the effectiveness and potential of our method in learning across multi-
time series and propagating uncertainty.
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