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1 Introduction

Many diseases are diagnosed by pathologists using key morphological features in imaging data; but
the genes that capture the internal state of cells and are therefore associated with specific morphologies
are typically unknown. To address this question, the GTEx Consortium [8; 7] has collected data from
over 948 autopsy research subjects, including standardized whole tissue slides and RNA sequencing
gene expression levels from approximately 50 different human tissues. These multi-subject, multi-
view data provide an opportunity to develop computational tools that quantify how genome-level
associations affect morphological features observable in histology slides.

Our work builds upon a line of research rooted in canonical correlation analysis (CCA) [15]. Given
two random vectors, CCA aims to find the linear projections for which the projected vectors are
maximally correlated. Since its development, CCA has been reframed as a probabilistic model [4; 20]
and has been extended to nonlinear settings using kernel methods [1; 14] and neural networks [2].
Probabilistic CCA (PCCA) is particularly attractive for medical applications with small sample sizes
by explicitly capturing uncertainty [11]. However, fitting PCCA to high-dimensional data is difficult
since the time to fit the model scales superlinearly with the data’s dimensionality [17]. In addition,
PCCA will ignore possibly important nonlinear structure in data such as medical images; this structure
could be extracted with computer vision techniques such as convolutional neural networks [21] that
have achieved excellent performance on medical imaging tasks [5; 26; 9; 10; 13].

Given these challenges, two natural extensions would be to either fit a model in a two-stage approach
of first embedding the data and then fitting PCCA to the embedded data, or to train a model end-
to-end that includes both automatic feature learning and PCCA. For example, a recent two-stage
approach fit CCA to gene expression data and image embeddings from a convolutional autoenoder [3].
Another approach computed the principal components of single views and then computed cross-view
correlations [6]. But two-stage approaches decouple feature learning from joint modeling, and we
hypothesize that end-to-end training will learn features that are good for both reconstruction and joint
modeling. Thus, the second extension would be to use neural networks for a nonlinear embedding of
the observations before feeding these embedded features to PCCA in a single training epoch. Variants
of the end-to-end model exist, including deep canonical correlation analysis (DCCA) [2], and deep
variational canonical correlation analysis (DVCCA) [27]. DCCA estimates linear projections on
the outputs of neural networks, but the model is not generative. DVCCA is generative, but uses
nonlinear observation models for the full network. This makes the model difficult to interpret. While
“interpretability” is a broad concept [23], here we mean specifically that we can identify small subsets
of genes that are associated with specific image features. Being Bayesian, this means we want a
sparse prior. Joint training of probabilistic models and neural networks is challenging [18; 22], and
we propose a differentiable, variational take on this problem.

We want a model that is Bayesian, meaning it is generative, models uncertainty, and allows for
sparsity-inducing priors, and deep, meaning it learns features from observations with nonlinear
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Figure 1: Diagram of DPCCA. The input is a paired set of pathology images and gene expression levels. The
model is trained by fitting PCCA to embeddings from convolutional and linear autoencoders (gray), sampling
from the PCCA model using the reparameterization trick (yellow), and then backpropagating through the model
using the reconstruction loss. The model learns common and modality-specific latent variables (blue). Sparsity
is induced on the PCCA parameters for the gene expression levels (red box).

structure. To address this challenge, we develop a multimodal modeling and inference framework
that estimates shared latent structure of paired gene expression and medical image embeddings while
learning these embeddings end-to-end.

2 Deep Probabilistic CCA

Notation. We use subscript ¢ in {1,2,...,n} to index samples and superscript j € {a, b} to index
data set views. We denote the set ovf observations for view j as matrix X’ € R™*4  where the ith
row of X’ is a real-valued vector x}. Consider n paired samples {(x¢,x%)}™ ;. In our case, x{ is a

7
histology image and x? is gene expression levels taken from sample i.

Model and Training. Deep probabilistic CCA (DPCCA) is a deep, generative model that fits PCCA
to the embeddings of two autoencoders, training the model end-to-end with backpropogation through
the reconstruction loss (Figure 1). The model has a Laplacian prior on the PCCA weights for the
gene expression levels to encourage sparsity.

In detail, given samples x* and x’, the encoders E°(-; 8% ) and E(-; 8" ) embed their respective

modalities into separate d-dimensional vectors, y* € R? and y> € R?. Each encoder may be
modality- and data set-specific. The d-dimensional encoded vectors y* and y® are the inputs to a
PCCA module whose output are three k-dimensional latent embeddings: a common latent embedding
z¢ shared across modalities, and two modality-specific embeddings z* and z°:

2%,2°,2° ~ N (01 1) ¥ ~ N(AZ? + AJze; 7)) (1)

where 27 € R¥, Pl oe Rk*Eand A € R¥* Note that A7 denotes the parameters for the
common latent variable z° [24]. The expectation—maximization (EM) parameter updates for PCCA
are equivalent to the EM parameter updates for factor analysis given appropriately tiled data: y =
(y,y" T,z = (2%,2°,2°), A = (A*,A")7, and ¥ = diag((®*, ¥)). The EM algorithm for
parameters A* and ¥* for a single sample y is [12; 4],

A= (vEy [y ) (Bl 1y]) @ = Ldiag(yy" - Ay [ 1¥yT). @

The posterior embeddings of z are sampled from a normal distribution with moments E|z | x] = 8x
and Elzz" | x] = I — BA + Bxx' B where 8 = AT (AA" + ¥)~!. Using these estimated
moments, we sample y ~ N (A*z; ¥*) using the reparameterization trick similar to [19], and decode

each embedding using a modality-specific decoder D7 (; Ogec). Finally, let £ be the loss and © be
both the neural network and PCCA parameters. We optimize Vg £ where

IS jea a 1~ b b be b
L= - DIk —x¢3 + - S OI% = X203+ (1A% + 1A% + (105l 3)
i1 i1



and v > 0 is a tuning parameter for the Laplacian prior. When we say that the model is trained
end-to-end, we mean that this is the single loss that is optimized through backpropagation, while the
PCCA parameter estimates act as implicit variational regularization.
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Figure 2: (A) Examples of original data (top row) and reconstructions (bottom row) of gene expression
covariance matrices (left) and histology slides (right). For clarity, we show the top 10 least sparse columns
of the covariance matrix. (B) Expected log-likelihood on train (blue) and test (red) data. For clarity since the
log-likelihood is a function of sample size, we take the log of both series. (C) Generated image samples.

3 Experiments

We trained our model on 2,221 samples from GTEx V6 [8; 7]. Each Aperio whole tissue slide was
subsampled once down to a 1000 x 1000 pixel RGB image. The data set is small and imbalanced;
twelve tissues have fewer than 50 samples, and only one tissue has more than 200 samples. To
augment the data, the model was trained on 128 x 128 pixel crops with random rotations and reflections.
The image autoencoder is based on [16], and the gene autoencoder is two linear layers.

Before using our model for biomedical analysis, we wanted verify two important properties. First,
we wanted to show that our model could reconstruct both modalities from a shared latent variable.
To show this, we saved reconstructions of the images and heatmaps of the gene covariance matrices
during training. We found that our model was able to reconstruct both modalities (Figure 2A). This
suggests that a shared latent variable carries enough information to recapitulate both modalities.

Second, we wanted to verify our variational take on PCCA. With a composite model of neural
networks and PCCA, we might ask whether one of the submodules is being ignored due to an
imbalance in the numbers of parameters. This was a concern since image samples from the generative
model are fairly uniform (Figure 2C). To test this, we computed the expected log-likelihood over
training and found that it increases over time (Figure 2B). Taken together, these results suggest that
the neural networks and PCCA are jointly learning parameters for embedding and reconstructing data
from nonlinear observations while maximizing the log-likelihood of the generative model.

4 Discussion

We describe a method that extends probabilistic CCA with end-to-end training of deep neural networks
for joint modeling of high-dimensional paired biomedical data. We plan to address the uniformity of
the image samples in a few ways. First, we are currently processing GTEx V8, which has over seven
times as many samples. We expect this 7-fold increase in data to substantially improve the generative
model. Second, a heavy-tailed prior on ¥ may prevent the variance from collapsing to small values.
Finally, architectural changes such as pretrained convolutional layers or a nonlinear gene encoder



may improve the quality of the embeddings. Our model’s latent space can be quantified against given
tissue labels by external cluster analysis techniques such as the Rand Index [25], and this would let
us benchmark our model against other methods. Our scientific aim is to use this generative model on
a number of downstream tasks such as annotating histology slides with predicted gene expression
levels and analyzing clusters that capture shared structure in our paired data.
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