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1 Introduction

Neural Networks (NNs) have become the dominant approach to addressing computer vision (CV)
[1, 2, 3], natural language processing (NLP) [4, 5, 6], speech recognition (ASR) [7, 8] and bio-
informatics [9, 10] tasks. However, as observed by [11], they are susceptible to adversarial attacks -
perturbations to the input which are almost imperceptible to humans, yet which drastically affect the
predictions of the neural network. It was found that adversarial attacks are transferable [11, 12], that
it is possible to craft adversarial attacks within the physical world [13] and that adversarial attacks are
hard to defend against [14, 11, 15]. Currently, there are far more methods of successfully attacking
networks than there are of defending networks[14, 12, 13, 16, 17, 18, 19, 20]. Altogether, this raises
serious concerns about how safe it is to deploy neural networks for high-stakes applications.

In work done by [14] it was shown that adversarial attacks can be detected using a range of approaches.
Unfortunately, it turns out that attacks can then be crafted to fool the proposed detection schemes.
However, [14] singles out detection of adversarial attacks using uncertainty measures derived from
Monte-Carlo dropout as being the most successful of the evaluated methods. Detection of adversarial
attack using Monte-Carlo dropout was further investigated in [21]. In [21] adversarial attacks are
interpreted as inputs which lie off the manifold of natural images - the stronger the adversarial
perturbation, the further is the input from the manifold. Thus, adversarial samples can be seen as
’off-manifold’ out-of-distribution inputs. This suggests that adversarial attacks can be detected using
measures of model or distributional uncertainty1 provided by approaches like Monte-Carlo dropout.
Recently, [22] proposed Prior Networks - a new approach to modelling uncertainty which has been
shown to outperform Monte-Carlo dropout on a range of tasks. Unlike approaches such as Monte-
Carlo dropout, which indirectly specify a conditional distribution over output distributions, a Prior
Network p(π|x∗; θ̂) explicitly parametrizes a prior distribution over categorical output distributions.

Contributions. This work investigates the detection of Fast Gradient Sign Method (FGSM) [11],
Basic Iterative Method (BIM) [13] and Momentum Iterative Method (MIM) [16] adversarial attacks
using measures of model or distributional uncertainty derived from either a Monte-Carlo dropout
derived ensemble or Prior Networks, respectively. Two threat models are assessed - adversarial
attacks which have no knowledge of the detection scheme and detection-avoiding adversarial attacks
which have full knowledge of the detection scheme. Results show that Prior Networks successfully
detect both standard FGSM, BIM and MIM whitebox and blackbox adversarial attacks and also
detection-evading whitebox and blackbox adversarial attacks.

2 Uncertainty Estimation

Bayesian approaches treat model parameters θ as random variables and place a prior distribution p(θ)
over them to compute the posterior distribution p(θ|D) via Bayes’ rule. Uncertainty in the model
parameters induces a distribution over predictive distributions P(y|x∗,θ) for each observation x∗ -

1Distributional uncertainty arises when the test data is ’out-of-distribution’ relative to the training data.
Bayesian approaches model distributional uncertainty through model uncertainty [22].
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each set of model parameters parameterizes a conditional distribution over class labels. The expected
predictive distribution P(y|x∗,D) is obtained by marginalizing out the parameters. Unfortunately,
both the marginalization and calculation of the model posterior p(θ|D) are intractable for neural
networks. Typically the model posterior distribution is approximated using either an implicit or
explicit variational approximation q(θ) and the integral is approximated via sampling (eq. 1), using
approaches such as Monte-Carlo dropout [23].

P(y|x∗,D) =
∫

P(y|x∗,θ)p(θ|D)dθ ≈ 1

M

M∑
i=1

P(y|x∗,θ(i)), θ(i) ∼ q(θ) (1)

By selecting an appropriate approximate inference scheme and model prior p(θ) Bayesian approaches
aim to craft a model posterior p(θ|D) such that the ensemble of distributions {P(ωc|x∗,θ(i))}Mi=1
sampled from q(θ) is consistent in-domain and becomes increasingly diverse the further away x∗ is
from the region of training data. The entropy of the expected distribution P(ωc|x∗,D) will indicate
the total uncertainty in predictions. Measures of the diversity of the ensemble, such as Mutual
Information, assess uncertainty in predictions due to model uncertainty.

MI[y,θ|x∗,D]︸ ︷︷ ︸
Model Uncertainty

= H[Ep(θ|D)[P(y|x∗,θ)]]︸ ︷︷ ︸
Total Uncertainty

− Ep(θ|D)[H[P(y|x∗,θ)]]︸ ︷︷ ︸
Expected Data Uncertainty

(2)

In practice, however, for deep, distributed models with million of parameters, it is difficult to select
an appropriate approximate inference scheme to craft a model posterior which induces a distribution
over distributions with the desired properties. On the other hand, a Prior Network [22] p(π|x∗; θ̂)
2 directly parametrizes a prior distribution over categorical output distributions (in this work the
Dirichlet distribution) and is explicitly trained to yield the desired behaviour of the distribution over
distributions.

p(π|x∗; θ̂) = Dir(π|α), α = f(x∗; θ̂) (3)
The desired behaviors of the Prior Network can be visualized on a simplex (fig 1), where figure 1:a de-
scribes confident behavior, figure 1:b describes uncertainty due severe class overlap (data uncertainty)
and figure 1:c describes the behaviour for an out-of-distribution input.

(a) Low uncertainty (b) Data uncertainty (c) Out-of-distribution

Figure 1: Desired Behaviors of a Dirichlet distribution over categorical distributions.

A Prior Network is trained to display these behaviors by minimizing the KL-divergence between the
model and target in-domain and out-of-domain Dirichlet distributions [22]. The target in-domain
distribution is a sharp Dirichlet centered on the corner of the simplex corresponding to the target class
(fig. 1:a). A flat Dirichlet is chosen as the out-of-distribution target distribution pout(π) (fig. 1:c).
To train a Prior Network it is necessary to have out-of-distribution training data. For example, if a
model is trained on CIFAR-10 [24], it is possible to use CIFAR-100 as the out-of-distribution dataset,
as they don’t have overlapping classes. Given a trained Prior Network it is possible to calculate the
Mutual Information using an expression similar to equation 2:

MI[y,π|x∗; θ̂]︸ ︷︷ ︸
Distributional Uncertainty

= H[Ep(π|x∗;θ̂)[P(y|π)]]︸ ︷︷ ︸
Total Uncertainty

− Ep(π|x∗;θ̂)[H[P(y|π)]]︸ ︷︷ ︸
Expected Data Uncertainty

(4)

3 Detection-Avoiding Adversarial Attacks

If an adversarial attack is to avoiding detection using measures of uncertainty then it must change a
model’s prediction while leaving the measures of uncertainty unchanged. In the case of a DNN or

2Where π is a vector of probabilities:
[
π1, · · · , πK

]T
=

[
P(y = ω1), · · · , P(y = ωK)

]T
2



Monte-Carlo dropout, one approach to do this is to simply permute the predicted distribution over
classes so that the probability of the max class is assigned to the target class t, and the probability
of the target class t is assigned to the max class. The loss function minimized by the adversarial
generation process will be the KL divergence between the predicted distribution over class labels
P(y|x̃; θ̂) and the target permuted distribution Pt(y). For prior networks the equivalent approach
would be to minimize KL divergence to the target permuted Dirichlet distribution.

L
(
P(y|x̃; θ̂), t

)
= DKL(Pt(y)||P(y|x̃; θ̂)), L

(
P(π|x̃; θ̂), t

)
= DKL(pt(π)||p(π|x̃; θ̂)) (5)

4 Results and Discussion

All models are trained on the CIFAR-10 data. Prior Networks are trained in two configurations PN
and PN-ADV. PN is trained using CIFAR-10 as in-domain data and CIFAR-100 as ’on-manifold’
out-of-distribution data; PN-ADV is trained using both CIFAR-100 and FGSM adversarial attacks as
out-of-distribution training data. The idea of PN-ADV is to not only constrain the behavior of the
predicted distribution over distribution on-manifold but also off-manifold. ’Standard’ BIM and MIM
attacks are run for 10 iterations. Detection avoiding attacks are run for up to 100 iterations at a fixed
perturbation of 40 to shown the computational complexity of the task.

Model AUPR % ErrorMax.P Ent. M.I.
DNN 48.7 47.1 - 8.0
MCDP 48.4 45.5 37.6 8.0
PN 52.7 51.0 51.0 8.5
PN-ADV 51.6 50.2 50.2 8.2

Table 1: Misclassification detection. 10 dropout samples were used with dropout probability of 0.5 .

Table 1 Shows the misclassification detection performance and classification error rate of the four
model considered in this work. Misclassification detection performance is assessed using area under a
precision-recall curve with misclassifications as the positive class. Results show that using adversarial
examples as additional off-manifold training data for a Prior Network does not degrade classification
performance. Furthermore, it does not significantly affect misclassification detection performance.
Table 2 shows the out-of-distribution detection performance of the aforementioned models, with the
SVHN, LSUN and TinyImageNet datasets used as out-of-distribution data. Performance is assessed
using area under an ROC curve (ROC AUC). The results show that PN-ADV does not suffer from
significant drops in OOD detection performance, and in fact outperforms a standard Prior Network
on LSUN and TinyImageNet.

OOD Data Model ROC AUC
Max.P Ent. M.I.

SVHN

DNN 90.1 90.8 -
MCDP 89.6 90.6 83.7
PN 98.1 98.2 98.2
PN+ADV 98.0 98.1 98.1

LSUN

DNN 89.8 91.4 -
MCDP 89.1 90.9 89.3
PN 94.4 94.4 94.4
PN+ADV 94.8 94.9 94.9

TIM

DNN 87.5 88.7 -
MCDP 87.6 89.2 86.9
PN 94.3 94.3 94.3
PN+ADV 94.6 94.6 94.6

Table 2: CIFAR-10 out-of-domain detection

Figure 2 shows a summary of results for the most aggressive (MIM) adversarial attack. Figures 2a
and 2b show that standard whitebox MIM attacks are successful given a high-enough perturbation,
but are detectable using all approaches for small perturbations, and by PN-ADV for all perturbations.
Figures 2c and 2d show that is possible to craft successful detection-evading attacks against DNNS,
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(a) AUC vs. perturbation ε (b) Success Rate vs. perturbation ε

(c) AUC vs. Iter (d) Success Rate vs. Iter

Figure 2: Plots of ROC AUC and Success Rate vs. perturbation (A and B) or iterations (C and D)
against whitebox standard (A and B) and detection evading (C and D) MIM attacks.

but it more difficult against MCDP or very hard and computationally expansive for Prior Networks.
The experiments show that it is non-trivial to successfully construct whitebox adversarial attacks
which yield the target class and not perturb any properties of the distribution over distributions for
appropriately secured prior networks. This suggests that using measures of uncertainty derived from
distributions over output distributions constrains the space of solutions to the adversarial optimization
problem in a way which methods proposed in [25, 26, 27] do not. Furthermore, it is the explicit
specification of the behaviour of a distribution over distributions both in-domain and out-of-domain
both on- and off-manifold which greatly constrains the space of solutions where the attack both yields
the target class and avoids changing properties distributions and distributions over distributions. These
are encouraging results, however, further empirical evaluation on different datasets and adversarial
attacks is necessary.
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