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1 Introduction

Meta-learning or learning to learn is a promising direction for generalizing machine learning models
beyond the specific tasks they were trained on. Meta-learning ideas are at least a few decades
old [1,[12]], and recent approaches include metric learning [[13], soft-attention models [2]], memory-
augmented networks [[11], and learning optimizers [LO]. Our focus is on gradient-based meta-learning
algorithms that attempt to learn good initializations for a variety of tasks. Examples of this class of
algorithms include Model-Agnostic Meta-Learning (MAML) [3] and Reptile [8]. Learning to learn
new tasks using only a few training examples is a key concern for recent meta-learning approaches.

Generalizations of gradient-based meta learning methods using probabilistic approaches have been
proposed [6, 4} 5], and their advantage is that they can handle the uncertainty and ambiguity arising
from few-shot learning in a principled way. In [4} 5] the authors re-interpret MAML as a hierarchical
Bayesian model and utilize variational methods for posterior inference over the model parameters.
While [5] models the individual task parameters, [4] also provide an efficient scheme for inferring the
meta-task parameters. In [6], the authors use a non-parametric variational inference scheme — Stein
variational gradient descent to infer the parameters of the hierarchical Bayesian model underlying
MAML.

While the approaches mentioned are well-founded and show promising results, they implicitly assume
that the set of tasks used for meta-learning are similar and thus a single shared initialization between
the tasks is effective. In the real world, however, such homogeneous grouping of tasks rarely exist.
Hence we take a step further, and relax this assumption. In particular, we build on the probabilistic
view of MAML [4] and develop a mixture of MAML models (see figure .

Our proposed Probabilistic Mixture of MAML (ProMix-MAML) approach learns a distinct initial-
ization for each of the mixture components, instead of a single shared initialization. Each mixture
component contains a group of similar tasks, and task component memberships are inferred jointly
with the other parameters of the model by maximizing a lower bound to the marginal likelihood of
the model.

Using synthetic data, we demonstrate the performance of our approach in learning initializations for
disparate groups of tasks. We show that our ProMix-MAML approach outperforms MAML and also
learns an interpretable mixture of tasks.
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Figure 1: Graphical models for: (a) Left: Probabilistic MAML (variation of [4]), (b) Right: The
proposed Probabilistic Mixture of MAML (ProMix-MAML).

2 Probabilitic Mixture of MAML for meta learning from heterogeneous
tasks

The generative model can be described as follows. We endow each task ¢ with a categorical indicator
variable ¢; which indicates the component membership for the task,

¢t | m~ Cat(w), |« ~ Dirichlet() (1)
Task specific parameters, ¢; are then drawn,
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The conditional independencies are summarized in Figure[I] and the joint distribution is given by,
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Both p(0), | p) and p(¢: | 0)) are modeled as Gaussians with diagonal covariances and means
specified by p and . For the synthetic regression problems considered in this paper, we use Gaussian
likelihoods p(Di™ | ¢¢) = 1025 N (Yem | 9o, (@1.0), 02), where g is a network parameterized by

b1, p(DP | ¢y) is analogously defined. For the synthetic experiments, we fix o2 to the true noise
variance.

3 Inference

We rely on variational inference to infer both the task specific parameters ¢; and c;, as well as cluster
specific meta-parameters, 6. We assume the variational approximation to factorize as follows,

K T
Q({ek}kK:h {¢t;ct}?:1 | )‘) = HN(ek ‘ Mk?AkJ) HCI(¢t,Ct | )\thET), (5)
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where Ay, is constrained to be a diagonal matrix, and A denotes the collection of all variational
parameters. Note that while the posterior factorizes between the meta and task specific parameters,
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Figure 2: Regression error for varying number of components and increasing number of gradient
steps. ProMix-MAML with 5 components preforms the best. The initial weights (at gradient step =
0) obtained from the ProMix-MAML also perform better when compared to the plain MAML.

we find it useful to maintain structure between the task specific parameters ¢; and ¢, ¢(¢¢, c; |
Ae: Di") = q(er | Aey)a(@r | e, DI, Ng, ), where Ay = {\g,, A, }. We use a categorical distribution
for q(cy | Ae,) = Categorical(c; | A, ), and conditioned on ¢; and the training data D}", we define,

q(¢e| D" ce =k, Np,) = N (e — Vyu L(D'), W), (©6)

where W is again constrained to a diagonal matrix. For the global mixture weights 7, instead of
inferring a full distribution we only infer the MAP estimate. We use stochastic gradient variational
Bayes to optimize the lower bound to the marginal likelihood of the model,

p({D", DY Yy | moa,p) > L, A p, )
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4 Experiments

Synthetic data. We present results on synthetic regression tasks to illustrate the working of the
proposed ProMix-MAML approach. Each task corresponds to few-shot regression of a sinusoid
function, with a different phase and amplitude. Following [3]], we generated tasks by uniformly

sampling amplitudes in the range [0.1, 5.0] and phase between [0, 7]. For each task ¢, the datapoints

{4 0, Ye.n JotrpinTNtest are sampled uniformly between [—5.0, 5.0).

The architecture for the regressor neural network is identical to that in [3] comprising of 2 hidden
layers with 40 units each. The K mixture components in ProMix-MAML are K independently
initialized regressors. Note that both input and output are scalars. We use one-gradient step with 10
samples for training both MAML and ProMix-MAML and fix the step size & = 0.01. Figure 2] shows
the error for varying number of mixture components and gradient steps.

Our ProMix-MAML approach outperforms MAML as the number of components increase, until the
number of mixture components is 5 at which point performance saturates. To gain further insights into
the results, in Figure 3| (see appendix), we visualize the tasks assigned to various mixture components.
We find that sinusoids with similar amplitude or phase are typically assigned to the same mixture
component. Our next steps include careful validation of the proposed model on real data, as well as
the application of ProMix-MAML for few-shot learning with high dimensional images [7]], and in
reading comprehension applications [9]].
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A Visualizing Clustering of Tasks in ProMix-MAML
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Figure 3: Clustering of tasks when the task distribution comprises of sinusoids with varying amplitude
and phase. Number of mixture components is set to 3. It can be seen that sinusoids with similar
amplitude or phase are assigned to same mixture component. The first component (top row) groups
together sinusoids with similar phase. The second and third components both contain sinusoids of
similar phases but while component two groups together sinusoids of larger magnitude, component
three focuses on smaller amplitude sinusoids. The Red line is the ground truth, red triangles are
training data points sampled from the ground truth, blue triangles are predictions at novel test points.
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Since q(¢¢ | ¢; = k) is just a Gaussian, so H(q(¢; | ¢; = k)) is available in closed form, allowing us
to compute the entire expression above in closed form.
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