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1 Introduction

Bayesian neural networks (BNNs) [11, 18] have the potential to combine the scalability, flexibility,
and predictive performance of neural networks with principled Bayesian uncertainty modeling.
However, the practical effectiveness of BNNs is limited by our ability to specify meaningful prior
distributions and by the intractability of posterior inference. Choosing a meaningful prior distribution
over network weights is difficult because the weights have a complicated relationship to the function
computed by the network. Stochastic variational inference is appealing because the update rules
resemble ordinary backprop [9, 4], but fitting accurate posterior distributions is difficult due to strong
and complicated posterior dependencies [16, 31, 36, 28].
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Figure 1: Fitting periodic structures. Blue lines and shaded areas
correspond to predictive means and standard deviations.

In this paper, we propose to perform
variational inference directly on the
distribution of functions. Specifically,
we introduce functional variational
BNNs (fBNNs), where a BNN is
trained to produce a distribution of
functions with small KL divergence to
the true posterior over functions. We
prove that the KL divergence between
stochastic processes can be expressed
as the supremum of marginal KL di-
vergences at finite sets of points. Based on this, we present a novel objective functional ELBO
(fELBO). Then we introduce a GAN-like minimax formulation and a VAE-like maximization formu-
lation for functional variational inference. To approximate the marginal KL divergence gradients, we
adopt the recently proposed spectral Stein gradient estimator (SSGE) [29].

2 Functional Variational Bayesian Neural Networks

2.1 Functional Evidence Lower Bound (fELBO)

Given dataset D = (XD,yD), variational inference in weight space is based on the equivalence
between maximizing the ELBO and minimizing the KL divergence from the true posterior. Now
we introduce functional variational inference, where the functional ELBO (fELBO) is defined with
respect to a variational posterior over functions (f : X → Y) rather than over weights.

L(q) := Eq[log p(yD|f)]−KL[q(f)||p(f)]. (1)

Specifically, we assume a stochastic process prior p(f) over functions. This could be a Gaussian
Process, but one could also use stochastic processes without closed-form marginal densities, such
as distributions over piecewise linear functions. We consider a variational posterior qφ(f) ∈ Q
defined in terms of a neural network with stochastic weights and/or stochastic inputs. Specifically,
we sample a function from q by sampling a random noise ξ and reparameterize f(x) = gφ(x, ξ).
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Figure 2: Prediction on x3 problem. Here a× b represents a hidden layers of b units. Red dots are 20 training
points. Blue line is the mean of final prediction and the shaded areas represents standard derivations. We
compare fBNNs, BBB, and HMC [19]. One desideratum of Bayesian models is that they behave gracefully as
their capacity is increased [23]. Unfortunately, BNN priors may have undesirable behavior as more units or
layers are added. Larger BNNs entail more difficult posterior inference and larger description length for the
posterior, causing degeneracy for large networks. Our fBNNs do not have this problem, since the prior is defined
directly over the space of functions, and therefore the BNN can be made arbitrarily large without changing the
functional variational inference problem.

For example, the standard Bayesian neural networks with Gaussian weight distributions allow this
reparameterization trick [13]. Note that because a single vector ξ is shared among all input locations,
it corresponds to randomness in the function, rather than observation variance; hence, the sampling of
ξ corresponds to epistemic, rather than aleatoric, uncertainty [6].

In theorem 1, we prove that the functional KL divergence is equal to the supremum of marginal KL
divergences over all finite sets of input locations X = x1:n, which we term measurement points.
Intuitively, this follows from the Kolmogorov Extension Theorem in appendix A.2 which guarantees
that we only need finite marginal distributions to define the stochastic process. A full proof is given
in Appendix C.
Theorem 1 (Functional KL Divergence). For two stochastic processes P,Q, the KL divergence is
the supremum of marginal KL divergences over all finite subset of inputs x1:n:

KL[P‖Q] = sup
n, x1:n

KL[Px1:n
‖Qx1:n

]. (2)

fELBO Using this characterization of the functional KL divergence, we rewrite the fELBO:

L(q) = Eq[log p(yD|f)]− sup
X

KL[q(fX)||p(fX)]

= inf
X

∑
(xD,yD)∈D

Eq[log p(yD|f(xD))]−KL[q(fX)||p(fX)]

:= inf
X
LX(q).

(3)

Hence, maximizing L(q) can be viewed as a two-player game analogous to a GAN [8]: the generator
is maximizing LX(q) with respect to q, and the discriminator is minimizing LX(q) with respect to
X.

Interestingly, we can show that if measurement points contains all training examples, LX(q) is a
lower bound of the log marginal likelihood log p(D). A proof is in Appendix D.3.
Theorem 2 (Lower Bound). If X contains all training input locations XD, then

LX(q) = log p(D)−KL[q(fX)‖p(fX|D)] ≤ log p(D).

2.2 Functional Variational Inference

Now we present practical algorithms for functional variational inference.
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Adversarial Functional Variational Inference Analogously to GANs2, L(q) is likely to be infi-
nite if the discriminator is completely unrestricted, because most stochastic process priors assign
measure zero to the set of functions representable by a neural network [1]. However, by limiting the
capacity of the discriminator, we obtain a meaningful minimax objective which forces the generator
to produce samples which resemble the true posterior. Most obviously, we can restrict the discrimina-
tor to choose measurement points of size M . Then we have the adversarial functional variational
inference:

max
q∈Q

min
|X|=M

LX(q). (4)

To solve this minimax problem, we can adopt the similar inner and outer loop optimization like did in
GANs [8]. In the inner loop, we minimize LX(q) with respect to X; in the outer loop, we maximize
LX(q) with respect to the generator q.

Sampling-Based Functional Variational Inference Adversarial functional variational inference
plays a minimax game, which is difficult to optimize and takes longer time for convergence [8].
Here we present sampling-based functional variational inference as an alternative, which only jointly
optimizes a same objective like VAE [13]. Specifically, we replace the minimization in eq. (4) with a
sampling distribution c, and then maximize the expected LX(q) under this distribution.

However, without the minimization, the objective will be inclined to overfit on training locations
because of the log likelihood term. We therefore let the measurement points X include random subset
XDs of training data and denote XM = X\XDs . Then the sampling-based functional variational
inference becomes,

max
q∈Q

EDsEXM∼c LXM ,XDs (q). (5)

where XM are M points independently drawn from c. Denote fM , fD as the function values for
XM ,XD, respectively. By theorem 2, if X contains all of XD,

LXM ,XD (q) = log p(D)−KL[q(fM , fD)‖p(fM , fD|D)]. (6)

Maximizing LXM ,XD (q) is equivalent to minimizing the KL divergence from the true posterior on
points XM ,XD. Therefore, another interpretation of sampling-based functional variational inference
is that we want better posterior approximation on more "interesting" locations weighted by c.

2.3 KL divergence Gradients

Computing fELBO requires to compute the likelihood term and the KL divergence. Although the
likelihood term is tractable, the KL divergence term remains intractable because we don’t have the
explicit formula for variational posterior qφ(fX|X). Note ∇φKL[qφ(fX)‖p(fX)] is given by

Eq
[
∇φ log qφ(fX)

]
+ Eξ

[
∇φfX(∇f log q(fX)−∇f log p(fX))

]
. (7)

It is easy to check that the first term in eq. (7) is zero [26]. Besides that, using parametric variational
posterior, the gradients∇φfX can be computed easily by backpropagation. All we left are the log-
density derivatives ∇f log q(fX) and ∇f log p(fX). For priors with explicit densities like Gaussian
Processes [22], Student-t process [27] and Wishart Process [5],∇f log p(fX) is analytic.

Spectral Stein Gradient Estimator (SSGE) [29] is a recently proposed method for estimating the log
density derivative function of an implicit distribution, i.e. ∇f log q(fX), only requiring samples from
the distribution. Specifically, given a continuous differentiable density q(x), and a positive definite
kernel k(x,x′) in the Stein class [14] of q, they show

∇xi log q(x) = −
∞∑
j=1

[
Eq∇xiψj(x)

]
ψj(x), (8)

where {ψj}j≥1 is a series of eigenfunctions of k described by the Mercer’s theorem: k(x,x′) =∑
j µjψj(x)ψj(x

′). Then the Nyström method [3, 34] is used to approximate the eigenfunctions
ψj(x) and their derivatives. The final estimator is given by truncating the sum in eq. (8) and replacing
the expectation by Monte Carlo estimates.

2The ordinary GAN objective is typically infinite for an unrestricted discriminator because the generator
typically generates from a submanifold of data space.
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3 Experiments with Contextual Bandits

Table 1: Contextual bandits regret. Results are relative to the cumulative regret of the Uniform algorithm.
Numbers after the algorithm correspond to the network size. We report the mean value and mean rank over
multiple datasets.

FBNN 1× 50 FBNN 2× 50 FBNN 1× 500 FBNN 2× 500 MULTITASKGP BBB 1× 50 BBB 1× 500
M. RANK 5.875 7.125 4.875 5.0 5.875 11.5 13.375
M. VALUE 46.0 47.0 45.3 44.2 46.5 56.6 68.1

BBALPHADIV PARAMNOISE NEURALLINEAR LINFULLPOST DROPOUT RMS UNIFORM
M. RANK 16.0 10.125 10.375 9.25 7.625 8.875 16.75
M. VALUE 87.4 53.0 52.3 NAN 48.3 53.0 100

We compared our fBNNs with the algorithms benchmarked in [25]. We used the multi-task GP of
[25] as the prior for the fBNNs. We run the experiments for all algorithms and tasks using the default
settings open sourced by [25]. For fBNNs, we also kept the same setting, including batchsize, training
epochs and training frequency. Measurement sets consisted of training batches, combined with 10
points sampled from c. We ran each experiment 10 times and report the mean and standard derivation
in Table 4. Similarly to [25], we also report the mean rank and mean regret.

As shown in Table 4, fBNNs outperformed other methods by a wide margin. Additionally, the
fBNNs maintained consistent performance with various network sizes. By comparison, BBB suffered
significant performance degeneration when the hidden size was increased from 50 to 500. This is
consistent with our hypothesis that functional variational inference can gracefully handle networks
with high capacity. We also show a BO experiment in App E.5, which also needs reliable uncertainty.
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A Background

A.1 Variational Inference for Bayesian Neural Networks

Given a dataset D = {(xi, yi)}ni=1, a Bayesian neural network (BNN) is defined in terms of a prior
p(w) on the weights, as well as the likelihood p(D|w). Variational Bayesian methods [11, 9, 4]
attempt to fit an approximate posterior q(w) to maximize the evidence lower bound (ELBO):

Lq = Eq[log p(D|w)]−KL[q(w)‖p(w)]. (9)

The most commonly used variational BNN training method is Bayes By Backprop (BBB) [4], which
uses a fully factorized Gaussian approximation to the posterior, i.e. q(w) = N (w;µ,diag(σ2)).
Using the reparameterization trick [13], the gradients of ELBO towards µ, σ can be computed by
backpropagation, and then be used for updates.

Most commonly, the prior p(w) is chosen for computational convenience; common choices include
independent Gaussian or Gaussian mixture distributions. Other weight priors, including log-uniform
priors [12, 15] and horseshoe priors [7, 15], have been proposed for particular purposes such as model
compression and model selection. However, the relationships of weight space priors to the functions
computed by networks are difficult to characterize.

A.2 Stochastic Processes

A stochastic process is defined as a random function F : X → Y . For any finite subset x1:n, F can
compute its marginal joint distribution over the function values F (x1:n). For example, the Gaussian
Process has its marginal distributions as multivariate Gaussians, and the Student-t Process [27] has its
marginal distribution as multivariate Student-t distributions.

However, directly representing a stochastic process is difficult because X is typically infinite. Kol-
mogorov Extension Theorem [20] provides an alternative using finite dimensional marginal distri-
butions. Specifically, for a collection of joint distributions ρx1:n

, Kolmogorov Extension Theorem
states that, ρ defines a random process F such that ρx1:n

is the marginal distribution of F (x1:n) if ρ
satisfies the following two conditions:

Exchangeability For any permutation π of {1, · · · , n}, ρπ(x1:n)(π(y1:n)) = ρx1:n
(y1:n).

Consistency For any 1 ≤ m ≤ n, ρx1:m(y1:m) =
∫
ρx1:n(y1:n)dym+1:n.

Bayesian neural networks satisfy both exchangeability and consistency, therefore it defines a stochastic
process.

B The Algorithm

B.1 Injected Noises for Gaussian Process Priors

For Gaussian Process prior, p(fX) is multivariate Gaussian distribution, which has an explicit formula.
Therefore, we can compute the gradients∇f log pφ(fX) analytically.

In practice, we found that the GP kernel matrix suffers from statbility issues. To stabilize the gradients
computation, we propose to inject a small amount of Gaussian noise on the function values, i.e., to
instead estimate the gradients of∇φKL[qφ∗pγ‖p∗pγ ], where pγ = N (0, γ2) is the noise distribution.
This is like the instance-noise trick that is commonly used for stabilizing GAN training [30]. Note
that injecting the noise on the GP prior is equivalent to have a kernel matrix K + γ2I, which have
more stable properties. Beyond that, injecting the noise on the parametric variational posterior doesn’t
affect the reparameterization trick either. Therefore all the previous estimation formulas still applies.

B.2 The Algorithm

Throughout this paper, we mainly investigate sampling-based functional variational inference.

Now we present the whole algorithm for fBNNs in Algorithm 1. Because the log likelihood term
has unbiased mini-batch estimations, we estimate LX(q) with mini-batch Ds for fast computation.
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Specifically, we are optimizing∑
(x,y)∈Ds

Eqφ [log p(y|f(x))]−KL[q(fM , fDs)‖p(fDs , fM )] (10)

which is also a proper lower bound of log p(Ds).

Algorithm 1 Functional Variational Bayesian Neural Networks (fBNNs)

Require: Dataset D, sampling distribution c, variational posterior g(·), prior p (explicit or implicit).
1: while φ not converged do
2: XM ∼ c; DS ⊂ D . sample measurement points
3: fi = g({XM ,XDS}, ξi;φ), i = 1 · · · k. . sample k function values
4: g1 = 1

k

∑
i

∑
(x,y)∇φ log p(y|fi(x)) . compute log likelihood gradients

5: g2 = SSGE(p, f1:k) . estimate KL gradients
6: φ← Optimizer(φ,g1 − g2) . update the parameters
7: end while

C Stochastic Processes

C.1 Basic Measure Theory Notations

π-system A π-system is a collection of subsets that is closed under finitely many intersections.

σ-algebra generated by cylinder sets Suppose

X ⊂ RT = {f : f(t) ∈ R, t ∈ T}

is a set of real-valued functions. Let B(R) denote the Borel subsets of R. A cylinder subset of X is a
finitely restricted set defined as

Ct1,··· ,tn(B1, · · · , Bn) = {f ∈ X : f(ti) ∈ Bi, 1 ≤ i ≤ n}

Each
Gt1,··· ,tn = {Ct1,··· ,tn(B1, · · · , Bn) : Bi ∈ B(R), 1 ≤ i ≤ n}

is a π-system that generates a σ-algebra Σt1,··· ,tn . Then the family of subsets

FX =
∞
∪
n=1

∪
ti∈T,i≤n

Σt1,··· ,tn

is an algebra that generates the cylinder σ-algebra for X .

Definition 1 (KL divergence [10]). Given two probability measures q and p on measure space
(Ω,B), the KL divergence of q with respect to p is defined as

KL[q‖p] = sup
Q

KLQ[q‖p]. (11)

where the supremum is over all finite measurable partitions Q of Ω.

C.2 PushForward and Kolomogrov Extension Theorem

Definition 2 (Pushforward measure). Given probability spaces (X,ΣX , µ) and (Y,ΣY , ν), we say
that measure ν is a pushforward of µ if ν(A) = µ(T−1(A)) for a measurable T : X → Y and any
A ∈ ΣY , denoted by ν = µ ◦ T−1.

Definition 3 (Canonical projection map). Let T be an arbitrary index set, and {(Ωt,Ft)}t∈T be
some collection of measurable spaces. For each subset J ⊂ I ⊂ T , define ΩJ =

∏
t∈J Ωt. We call

πI→J the canonical projection map from I to J if

πI→J(w) = w|J ∈ ΩJ ,∀w ∈ ΩI . (12)

8



Theorem 3 (Kolmogorov extension theorem). Let T be an arbitrary index set. (Ω,F) is a standard
measure space, whose product space on T is (ΩT ,FT ). For each finite subset I ⊂ T , suppose we
have a probability measure µI on ΩI that satisfies the following compatibility relation: For each
finite subset J ⊂ I ⊂ T , we have

µJ = µI ◦ π−1
I→J . (13)

Then there exists a unique probability measure µ on ΩT such that ∀ finite subset I ⊂ T ,

µI = µ ◦ π−1
T→I . (14)

In Gaussian processes, µ is a Borel measure on a separable Hilbert space (H,B(H)). µI is a marginal
Gaussian measure at any finite set (i.e., I) of input positions [17].

C.3 Proof

We first introduce several lemmas for proving the theorem.

Lemma 4.
GX =

∞
∪
n=1

∪
ti∈T,i≤n

Gt1,··· ,tn

is a π-system. And σ(GX) generates the same cylinder σ-algebra of X as FX .

Definition 4. Let H be a set of functions, define its T-set τ(H) as

τ(H) = T\{t|t ∈ T,∃ST\{t}, s.t. ST\{t} × Rt = H}

Here × represents product-algebra. Intuitively, τ(H) represents all timesteps that restricts the
functions in H . Or we can say if some t doesn’t belong to τ(H), then function values of t can be any
number in real line R.

Lemma 5. For any set G ∈ σ(GX), its T-set τ(G) is countable.

Proof. We build the sigma-algebra σ(GX) through an iterative process. We begin byH0 = GX , in
each iteration, let

Hi+1 = Hi ∪ {Hc|H ∈ Hi},
Hi+1 = Hi+1 ∪ {∪

j
Hj |H1, H2, · · · ∈ Hi}. (15)

Recursively applying this extension, we can generate σ(GX) = H∞.

Because τ(Hc) = τ(H), and countable union of countable sets is still countable. We know the two
updates above keep the countability of its T-set. Therefore, ∀G ∈ σ(GX), τ(G) is countable.

Theorem 6. For two stochastic processes P,M on functional measure space (ΩT,FT), the KL
divergence between P and M ,

KL[P‖M ] = sup
Tf

KL[PTf ‖MTf ],

Where the supremum is over all finite subsets, and PTf ,MTf represent the marginal distribution of
P,M on Tf , respectively.

Proof. Sketches

1. The cylinder σ-algebra defines a σ-algebra σ(GX) on the function space. By Lemma 4.

2. Each set in the σ(GX) is only related to countable number of timesteps. By Lemma 5.

3. Any finite measurable partitions are related to countable number of timesteps, thus corre-
spond to the marginal distribution over a countable subset by an inclusion map. Therefore the
KL between stochastic processes reduces to the KL over marginal distributions of countable
subsets.

9



4. KL over marginal distributions of countable subsets can be represented as supremum of KL
over marginal distributions over its finite subsets.

By Definition 1,
KL[P‖M ] = sup

Q
ΩT

KLQ
ΩT [P‖M ],

where the sup is over all finite measurable partitions of the function space, denoted by QΩT :

QΩT = {Q(1)

ΩT , . . . , Q
(k)

ΩT |
k⋃
i=1

Q
(i)

ΩT = ΩT, Q
(i)

ΩT ∈ FT are disjoint sets, k ∈ N+}

By Lemma 5, τ(Q
(i)

ΩT) is countable. Therefore, Tc :=

k⋃
i=1

τ(Q
(i)

ΩT) is countable.

Consider the canonical projection mapping πT→Tc , which induces a partition on ΩTc , denoted by
QΩTc :

Q
(i)

ΩTc = πT→Tc(Q
(i)

ΩT).

The pushforward measure defined by this mapping is

PTc = P ◦ π−1
T→Tc , MTc = M ◦ π−1

T→Tc .

Then we have
KL[P‖M ] = sup

Q
ΩT

KLQ
ΩT [P‖M ] (16)

= sup
Q

ΩT

∑
i

P (Q
(i)

ΩT) log
P (Q

(i)

ΩT)

M(Q
(i)

ΩT)
(17)

= sup
Tc

sup
Q

ΩTc

∑
i

PTc(Q
(i)

ΩTc ) log
PTc(Q

(i)

ΩTc )

MTc(Q
(i)

ΩTc )
(18)

= sup
Tc

KL[PTc‖MTc ] (19)

Denote F(Tc) as the collection of all finite subsets of Tc. For any finite set Tj ∈ F(Tc), we
denote PTj as the pushforward of P on finite set Tj . According to Kolmogorov Extension Theorem
(Theorem 3), PTj is the marginal distribution of P at Tj . Because Tc is countable, we have

KL[P‖M ] = sup
Tc

KL[PTc‖MTc ] (20)

= sup
Tc

sup
Tj∈F(Tc)

KL[PTc‖MTc ] (21)

Note for any finite subset Tj , we can build a finite measurable partition QΩT such that its Tc equals
to Tj . Let Ω1,Ω2 be any two-element partition of Ω. In fact, we can let QΩT be a partition with 2|Tj |

subsets, that each subset is a cylinder subset with timesteps in Tj and for each timestep, the function
values belong to Ω1 or Ω2. Therefore, we have shown the set {Tj |Tj ∈ F(Tc),Tc} contains all
finite subsets.

On the other hand, every element in {Tj |Tj ∈ F(Tc),Tc} is a finite subset, we know {Tj |Tj ∈
F(Tc),Tc} equals to the collection of all finite subsets.

Therefore we have proven the theorem.

D Additional Theoretical Results

D.1 Consistency for Gaussian Process

For both adversarial and sampling-based functional variational inference, we cannot enumerate finite
subsets of all lengths. However, we conclude that when both the prior and variational process are
GPs, the sampling-based method guarantees that the optimal variational posterior matches the true
posterior GP.

10



Theorem 7. When p and q are both Gaussian Processes, q’s family is expressive enough, M ≥ 2
and the support of c is X , then the following statements are equivalent:

• eq. (5) attains its optimum.
• the variational posterior process and the true posterior process are identical.

Proof. Assume the GP form of p(f(·)|D) and q(f(·)):

p(f(·)|D) : GP(mp(·), kp(·, ·)), (22)
q(f(·)) : GP(mq(·), kq(·, ·)), (23)

where m and k denote the mean and covariance functions, respectively. Because the KL is non-
negative, then eq. (5) achieves optimum if and only if KL[qφ(f(XM ))‖p(f(XM )|D)] = 0 at any
XM = [x1, . . . ,xM ]> ∈ XM , which is

N (mp(X),Kp) = N (mq(X),Kq), (24)

where m(X) = [m(x1), . . . ,m(xM )]>, and Kij = k(xi,xj). Given M ≥ 2, then for ∀1 ≤ i <
j ≤ M , we have mp(xi) = mq(xi), and kp(xi,xj) = kq(xi,xj). Remember that XM is chosen
arbitrarily, thus we have

mp(·) = mq(·), kp(·, ·) = kq(·, ·). (25)

Because GPs are uniquely determined by their mean and covariance functions, we arrive at the
conclusion.

D.2 Optimize GP Hyperparameters using Mini-Batch

Consider multivariate Gaussian distribution,

log p(y|0,Kθ) = −1

2
(y>K−1

θ y + log |Kθ|) + const

Its derivative towards Kθ is − 1
2K
−1
θ (Kθ − yy>)K−1

θ , which attains zero only at K? = yy>.
Therefore we have

log p(y|0,Kθ) ≤ log p(y|0,K?) (26)

Gaussian Process optimization maximizes data likelihood log p(y|0,Kθ). According to eq. (26),
its maximum is obtained at K? = yy>. In contrast, mini-batch GP optimization maximizes
expected subset likelihood ES

[
log p(yS |0,KS

θ )
]
, with S being a subset. According to eq. (26),

log p(yS |0,KS
θ ) ≤ log p(yS |0,ySy>S ). Therefore, its maximum is also obtained at K? = yy>.

Based on the results above, for expressive enough kernels, mini-batch optimized GP reaches the same
maximum as full-batch optimized GP, which justifies using mini-batch MLE for hyperparameter
optimization.

D.3 Proof for Evidence Lower Bound

This section provides proof for theorem 2.

Let XM = X\XD be measurement points which aren’t in the training data.

Proof.

KL[qφ(fD, fM )‖p(fD, fM |D)] = Eq
[
log

qφ(fD, fM )

p(fD, fM |D)

]
(27)

= Eq
[
log

qφ(fD, fM )p(D)

p(yD|fD)p(fD, fM )

]
= log p(D)− LX(q) (28)

11



E Additional Experiments

General Setting The variational posterior is represented as a stochastic neural network with in-
dependent Gaussian distributions over the weights, i.e. q(w) = N (w;µ,diag(σ2)).3 We always
used the ReLU activation function unless otherwise specified. Denote xmin, xmax as dimension-
wise minimal and maximal input locations, xd = xmax− xmin. We set the sampling distribution
c = U[xmin − xd/2, xmax + xd/2] unless specific notice. For experiments where we used GP
priors, we first fit the GP hyperparameters to maximize the marginal likelihood on subsets of the
training examples, and then fixed those hyperparameters to obtain the prior for the fBNNs.

E.1 Implicit Priors
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Figure 3: Implicit function priors and variational posteriors. The leftmost column shows 3 prior samples. The
other columns are different runs. Red dots are 40 training samples. We plot 4 posterior samples and plot the
standard derivation as shaded areas.

Since the fBNN is based on implicit variational inference, the priors need not have convenient
expressions for the marginal densities, i.e. we need not limit ourselves to GPs. In this section, we
consider two implicit priors: a distribution over piecewise constant functions, and a distribution over
piecewise linear functions. ?? provides the detailed explanation on the sampling process. Some
samples from these priors are shown in Figure 3.

Concretely, we randomly generate a function f : [0, 1]→ R with the specific structure. To sample
piecewise functions, we first sample n ∼ Poisson(3.), then we have n+ 1 pieces within [0, 1]. We
uniformly sample n locations from [0, 1] as the changing points. For piecewise constant functions,
we uniformly sample n + 1 values from [0, 1] as the function values in each piece; For piecewise
linear functions, we uniformly sample n+ 1 values for the values at first n+ 1 locations, we force
f(1) = 0.. Then we connect together each piece by a straight line.

In each run of the experiment, we first sampled a random function from the prior, and then sampled
20 locations from [0, 0.2] and 20 locations from [0.8, 1], giving a training set of 40 data points. The
standard deviation of observation noise is 0.02. In each iteration, measurement points included all
training examples, plus 40 points randomly sampled from [0, 1]. We used a fully connected network
with 2 hidden layers of 100 units, and tanh activations. (For this experiment, we used tanh rather than
ReLU because ReLU would have been unfairly well-suited to the non-smooth priors.) The network
was trained for 20,000 iterations. We show the predictive samples and variances of three different
runs in Figure 3.

As shown in Figure 3, the fBNN captured the basic structures for both piecewise constant priors and
piecewise linear priors, although the posterior samples did not seem to capture the full diversity of
possible explanations of the data. Interestingly, even though the tanh activation function encourages
smoothness, the network learned to generate functions with sharp transitions.

3We note that other choices are possible, since functional variational inference imposes no requirement that
epistemic uncertainty be represented in terms of a distribution over the weights of a network. (E.g., in principle,
a distribution over functions could be represented with a deterministic network with stochastic inputs.) However,
we stick with Gaussian distributions on the weights because it worked as well as anything else we’ve tried.
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E.2 Predictive Performance

To compare with previous work on predictive performance, we next evaluated fBNN in regression
experiments with publicly available datasets.

E.2.1 Small Scale Datasets

Following previous work [36], we first experiment with standard regression benchmark datasets from
the UCI collection [2]. In particular, we only used the datasets with less than 2000 data points so
that we can fit GP hyperparameters using marginal likelihood. The datasets were randomly split into
training and validation sets, comprising 90% and 10% of the data respectively. This splitting process
was repeated 10 times to reduce randomness.

Table 2: Averaged validation RMSE and log-likelihood for the regression benchmarks.

Validation RMSE Validation log-likelihood
Dataset BBB NNG Ours BBB NNG Ours

Boston 3.171±0.149 2.742±0.125 2.378±0.104 -2.602±0.031 -2.446±0.029 -2.301±0.038
Concrete 5.678±0.087 5.019±0.127 4.935±0.180 -3.149±0.018 -3.039±0.025 -3.096±0.016
Energy 0.565±0.018 0.485±0.023 0.412±0.017 -1.500±0.006 -1.421±0.005 -0.684±0.020
Wine 0.643±0.012 0.637±0.011 0.673±0.014 -0.977±0.017 -0.969±0.014 -1.040±0.013
Yacht 1.174±0.086 0.979±0.077 0.607±0.068 -2.408±0.007 -2.316±0.006 -1.033±0.033

For all datasets, we used networks with one hidden layer of 50 hidden units. For all experiments,
we first fit GP hyper-parameters using marginal likelihood with a budget of 10,000 iterations. In
each experiment, the fBNN was trained for 2,000 epochs. And in each iteration, measurement points
included 20 training examples, plus 5 points randomly sampled from the data range.

We compared our method with Bayes By Backprop (BBB) [4] and Noisy Natural Gradient (NNG) [36].
In accordance with [36], we report the standard metrics including root mean square error (RMSE)
and validation log-likelihood. The results are summarized in Table 2. On most datasets, our fBNNs
outperformed both BBB and NNG, sometimes by a significant margin.

E.2.2 Large Scale Datasets

Table 3: Averaged validation RMSE and log-likelihood for the regression benchmarks.

Test RMSE Test log-likelihood
Dataset N BP BBB FBNN BP BBB FBNN

Naval 11934 (1.3±0.12)E-4 (1.6±0.21)E-4 (1.1±0.08)E-4 7.121±0.025 6.950±0.052 7.153±0.025
Protein 45730 4.159±0.045 4.331±0.033 4.142±0.044 -2.854±0.012 -2.892±0.007 -2.850±0.012
Video Mem. 68784 2.178±1.063 1.879±0.265 1.994±0.805 -2.421±0.994 -1.999±0.054 -1.912±0.101
Video Time 68784 2.761±0.385 3.632±1.974 2.529±0.248 -2.512±0.246 -2.390±0.040 -2.375±0.104
GPU 241600 21.039±0.607 21.886±0.673 20.75±0.771 -4.471±0.029 -4.505±0.031 -4.456±0.037
Year 515345 9.394 9.311 9.356 -3.672 -3.646 -3.669

Observe that fBNNs are naturally scalable to large datasets because they access the data only through
the expected log-likelihood term, which can be estimated stochastically. In this section, we verify this
experimentally. We compared fBNNs, BBB and BP with large scale UCI datasets, including Naval,
Protein Structures, Video Transcoding (Memory, Time), GPU kernel performance and YearPrediction.
We randomly split the datasets into 80% training, 10% validation, and 10% test. We used the
validating set to select the hyperparameters and perform early stopping.

Both methods were trained for 80,000 iterations.4 We used 1 hidden layer with 100 hidden units for
all datasets. For the prior of the fBNNs, we use a GP with Neural Kernel Network (NKN) kernels as
used in [32]. We note that the GP hyperparameters are fitted using minibatches of size 1000 with
10000 iterations. In each iteration, measurement sets consist of 500 training samples and 5 or 50
points from the sampling distribution c, tuned by validation performance. We ran each experiment 5
times, and report the mean and standard deviation in Table 3.

4We tune the learning rate from [0.001, 0.01]. We tune between not annealing the learning rate or annealing
it by 0.1 at 40000 iterations. We evaluate the validating set in each epoch, and select the epoch for testing based
on the validation performance.
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(a) BBB (b) FBNN (c) GP
Figure 4: Prediction on Mauna datasets. We compare BBB, FBNN and GP.

E.3 Contextual Bandits

Table 4: Contextual bandits regret. Results are relative to the cumulative regret of the Uniform algorithm.
Numbers after the algorithm correspond to the network size. We report the mean and standard derivation of the
mean over 10 trials.

M. RANK M. VALUE MUSHROOM STATLOG COVERTYPE FINANCIAL JESTER ADULT CENSUS WHEEL
FBNN 1× 50 5.875 46.0 21.38 ± 7.00 8.85 ± 4.55 47.16 ± 2.39 9.90 ± 2.40 75.55 ± 5.51 88.43 ± 1.95 51.43 ± 2.34 65.05 ± 20.10
FBNN 2× 50 7.125 47.0 24.57 ± 10.81 10.08 ± 5.66 49.04 ± 3.75 11.83 ± 2.95 73.85 ± 6.82 88.81 ± 3.29 50.09 ± 2.74 67.76 ± 25.74
FBNN 3× 50 8.125 48.9 34.03 ± 13.95 7.73 ± 4.37 50.14 ± 3.13 14.14 ± 1.99 74.27 ± 6.54 89.68 ± 1.66 52.37 ± 3.03 68.60 ± 22.24
FBNN 1× 500 4.875 45.3 21.90 ± 9.95 6.50 ± 2.97 47.45 ± 1.86 7.83 ± 0.77 74.81 ± 5.57 89.03 ± 1.78 50.73 ± 1.53 63.77 ± 25.80
FBNN 2× 500 5.0 44.2 23.93 ± 11.59 7.98 ± 3.08 46.00 ± 2.01 10.67 ± 3.52 68.88 ± 7.09 89.70 ± 2.01 51.87 ± 2.38 54.57 ± 32.92
FBNN 3× 500 4.75 44.6 19.07 ± 4.97 10.04 ± 5.09 45.24 ± 2.11 11.48 ± 2.20 69.42 ± 7.56 90.01 ± 1.70 49.73 ± 1.35 61.57 ± 21.73
MULTITASKGP 5.875 46.5 20.75 ± 2.08 7.25 ± 1.80 48.37 ± 3.50 8.07 ± 1.13 76.99 ± 6.01 88.64 ± 3.20 57.86 ± 8.19 64.15 ± 27.08
BBB 1× 50 11.5 56.6 24.41 ± 6.70 25.67 ± 3.46 58.25 ± 5.00 37.69 ± 15.34 75.39 ± 6.32 95.07 ± 1.57 63.96 ± 3.95 72.37 ± 16.87
BBB 1× 500 13.375 68.1 26.41 ± 8.71 51.29 ± 11.27 83.91 ± 4.62 57.20 ± 7.19 78.94 ± 4.98 99.21 ± 0.79 92.73 ± 9.13 55.09 ± 13.82
BBALPHADIV 16.0 87.4 61.00 ± 6.47 70.91 ± 10.22 97.63 ± 3.21 85.94 ± 4.88 87.80 ± 5.08 99.60 ± 1.06 100.41 ± 1.54 95.75 ± 12.31
PARAMNOISE 10.125 53.0 20.33 ± 13.12 13.27 ± 2.85 65.07 ± 3.47 17.63 ± 4.27 74.94 ± 7.24 95.90 ± 2.20 82.67 ± 3.86 54.38 ± 16.20
NEURALLINEAR 10.375 52.3 16.56 ± 11.60 13.96 ± 1.51 64.96 ± 2.54 18.57 ± 2.02 82.14 ± 3.64 96.87 ± 0.92 78.94 ± 1.87 46.26 ± 8.40
LINFULLPOST 9.25 NAN 14.71 ± 0.67 19.24 ± 0.77 58.69 ± 1.17 10.69 ± 0.92 77.76 ± 5.67 95.00 ± 1.26 NAN ± NAN 33.88 ± 15.15
DROPOUT 7.625 48.3 12.53 ± 1.82 12.01 ± 6.11 48.95 ± 2.19 14.64 ± 3.95 71.38 ± 7.11 90.62 ± 2.21 58.53 ± 2.35 77.46 ± 27.58
RMS 8.875 53.0 15.29 ± 3.06 11.38 ± 5.63 58.96 ± 4.97 10.46 ± 1.61 72.09 ± 6.98 95.29 ± 1.50 85.29 ± 5.85 75.62 ± 30.43
BOOTRMS 7.5 51.9 18.05 ± 11.20 6.13 ± 1.03 53.63 ± 2.15 8.69 ± 1.30 74.71 ± 6.00 94.18 ± 1.94 82.27 ± 1.84 77.80 ± 29.55
UNIFORM 16.75 100 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0

E.4 Time-series Extrapolation

Besides the toy experiments, we would like to examine the extrapolation behavior of our method
on real-world datasets. Here we consider a classic time-series prediction problem concerning the
concentration of CO2 in the atmosphere at the Mauna Loa Observatory, Hawaii [24]. The training
data is given from 1958 to 2003 (with some missing values). Our goal is to model the prediction for
an equally long period after 2003 (2004-2048). In Figure 4 we draw the prediction results given by
BBB, fBNN, and GP. We used the same BNN architecture for BBB and fBNN: an ReLU network
with 2 hidden layers, each with 100 units, and the input is a normalized year number augmented
by its sin transformation, whose period is set to be one year. This special design allows both BBB
and fBNN to fit the periodic structure more easily. Both models are trained for 30k iterations by the
Adam optimizer, with learning rate 0.01 and batch size 20. For fBNN the prior is the same as the
GP experiment, whose kernel is a combination of RBF, RBF×PER (period set to one year), and RQ
kernels, as suggested in [24]. Measurement points include 20 training samples and 10 points sampled
from U[1958, 2048], and we jointly train the prior GP hyperparameters with fBNN.

In Figure 4 we could see that the performance of fBNN closely match the exact prediction by GP.
Both of them give visually good extrapolation results that successfully model the long-term trend,
local variations, and periodic structures. In constrast, weight-space prior and inference (BBB) neither
captures the right periodic structure, nor does it give meaningful uncertainty estimates.

E.5 Bayesian Optimization

In this section, we adopt Bayesian Optimization to explore the advantage of coherent posteriors.
Specifically, we use Max Value Entropy Search (MES) [33], which trys to maximize the information
gain about the minimum value y?,

αt(x) = H(p(y|Dt,x))−H(p(y|Dt,x, y
?)) ≈ 1

K

∑
y?

[
γy?(x)φ(γy?(x))

Ψ(γy?(x))
− log(Ψ(γy?(x)))]

14



(a) RBF (b) ArcCosine (c) Matern12
Figure 5: Bayesian Optimization. We plot the minimal value found along iterations. We compare fBNN, BBB
and Random Feature methods for three kinds of functions corresponding to RBF, ArcCosine and Matern12 GP
kernels. We plot mean and 0.2 standard derivation as shaded areas.

Where φ and Ψ are probability density function and cumulative density function of a standard normal
distribution, respectively. The y? is randomly sampled from the posterior of function minimas and
γy?(x) = µt(x)−y?

σt(x) .

With a probabilistic model, we can compute or estimate the mean µt(x) and standard deviation σt(x).
However, to compute the MES acquisition function, samples y? of function minimas are required
as well, which leads to bigger difficulties. Typically when we model the data with a GP, we can get
the posterior on a specific set of points but we don’t have access to the extremes of the underlying
function. In comparison, if the function posterior is represented parametrically, we can perform
gradient decent easily and optimize for approximating function minimas.

We use 3-dim functions sampled from some Gaussian Process prior for bayesian optimization.
Concretely, we experiment with samples from RBF, ArcCosine and Matern12 kernels. We compare
three parametric approaches: fBNN, BBB and Random Feature [21]. For fBNN, we use the true
kernel as functional priors. In contrast, ArcCosine and Matern12 kernels do not have simple explicit
random feature expressions, therefore we use RBF random features for all three kernels. When
looking for minimas, we sample 10 optimals y?. For each minima, we perform gradient descent
along the parametric function posterior with 30 different starting points. We use 500 dimensions for
random feature. We use network with 5 × 100 for fBNN. For BBB, we select the network within
1× 100, 3× 100. Because of the similar issue in Figure 2, using larger networks won’t help for BBB.
We use batch size 30 for both fBNN and BBB. The measurement points contain 30 training points
and 30 points uniformly sampled from the known input domain of functions. We train fBNN and
BBB for 20000 iterations and anneal the coefficient of log likelihood term linearly from 0 to 1 for the
first 10000 iterations. The results with 10 runs are shown in Figure 5.

As seen from Figure 5, fBNN and Random feature outperform BBB by a large margin on all three
functions. We also observe fBNN performs slightly worse than random feature in terms of RBF
priors. Because random feature method is exactly a GP with RBF kernel asymptotically, it sets a
high standard for the parametric approaches. In contrast, fBNN outperforms random feature for both
ArcCosine and Matern12 functions. This is because of the big discrepancy between such kernels and
RBF random features. Because fBNN uses true kernels, it models the function structures better. This
experiment highlights a key advantage of fBNN, that fBNN can learn parametric function posteriors
for various priors.

E.6 Texture Extrapolation

In this section we perform a texture extrapolation experiment.

With a texture image, texture extrapolation tries to recover the missing region based on the observed
region in some image. We use a image of 224 × 224, and the central 60 × 80 region is removed
from the image. Treating each pixel as a data point, this forms 45376 training examples and 4800
test examples. Because the training size is too big to be afforded by a standard Gaussian Process.
Previous GP methods [35, 32] investigate the additive structure of such patterns and take advantage of
the Kronecker structure of the kernel matrix. However, such kronecker structure is only applicable to
limited structures. This experiment adopts fBNN with a GAN-like generator to perform the recovery.
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(a) Training (b) FBNN w.o. missing (c) FBNN w. missing
Figure 6: Texture Extrapolation for FBNN. For FBNN w.o. missing, the measurement points does not contain
the missing region; for FBNN w. missing, the measurement points contain the missing region.

We use a GP prior with the kernel used in [32]. We firstly train the prior hyperparameters with
GP regression with batch size 300. For the variational network, we use a GAN-like generator to
generate the whole image starting from a 40 dimensional U[0, 1] noise. The network arranges as
40-(64*7*7)-(32*28*28)-(16*112*112)-(8*224*224)-(1*224*224). We use filter size 5 and leaky
ReLU activation. Measurement points include 800 training points and 200 points sampled from the
missing region (FBNN w. missing). We use learning rate 0.003 to train fBNN for 40000 iterations
and anneal the kl coefficient from 0 to 1 linearly for the first 20000 iterations. We also evalute a
setting where measurement points only contain training regions (FBNN w.o. missing). The results
are shown in Figure 6.

As shown in Figure 6, fBNN correctly recovers the underlying structure and extrapolates to the
missing region. However, if measurement points do not contain missing regions, fBNN fits training
set perfectly but fails to extrapolate. This highlights the extrapolation effect of measurement points.
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