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1 Introduction
Semi-supervised pairing, learning explicit pairing relation between unlabeled input and target distri-
bution in an otherwise semisupervised setting, has recently attracted lots of attention [16, 12], since
data labeling is often time-consuming and requires lots of human labor. In this paper, we propose
Basis-Sharing Wasserstein Matching Auto-Encoder to tackle the problem of semi-supervised pairing.
Our model inspired by the success of robust representation learning for matching cross-modal latent
space distribution [15, 10] and good statistical properties of optimal transport [1, 4]. In particular,
Wasserstein distance in the optimal transport family has been shown to work on GANs and autoen-
coders [2, 14]. We propose to match the latent code distribution of the unlabeled dataset, with the
labeled data points as “anchor points”. This should help the network making association between
the distributions from two different domains. A similar idea that uses a different method has been
shown to work on some language tasks [3]; our work explores a new approach based on distribution
matching. Through preliminary experiments, we show that the proposed algorithm can successfully
incorporate the unlabeled data for improving the classification accuracy on MNIST and CIFAR10
datasets.

2 Proposed Method
2.1 Wasserstein Training of Cross-Domain Auto-encoders
We denote unlabeled training set as DUL = {{xi}ni=1,{yj}mj=1}, on which we want to find a pairing
relation, and labeled training set as D = {(x′i,y′i)}ri=1. Data points x⋅,x′⋅ ∼ X ∈ Rdx and y

⋅
,y′

⋅
∼

Y ∈ Rdy , where Rdx can be different from Rdy . Our model contains two auto-encoders on the input
domain {xi}ni=1 and the target domain {yj}mj=1 respectively:

x̂i = Decx(Encx(xi)), ŷi = Decy(Ency(yi)),

where x̂⋅ and ŷ
⋅
represent reconstructed data. For inference across domains x → y, we switch the

decoder of the two, and notice that backward inference can also be done easily (y → x):

ŷi = Decy(Encx(xi)), x̂i = Decx(Ency(yi)).

We also propose that the encoders share the latent structure across domains:

Encx(xi) =Bax(xi), Ency(yi) =Bay(yi), (1)

where B = [b1,b2, . . . ,bk] ∈ Rdh×k are shared low-rank decomposed basis vectors with rank k, and
ax(x) and ay(y) are standard deep encoders. This auto-encoder model with shared low rank repre-
sentation allows us to explicitly share the model parameters between domainsHx = {Encx(xi)}ni ,
andHy = {Ency(yi)}mi . On this shared space we minimize the Wasserstein distance(WD) between
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the input domain and the target domain, i.e. `wass =WD(Hx,Hy). So our objective function for
the training is:

min
Θ

E(Θ,D) + ρR(Θ,DUL) + γWD(Hx,Hy) (2)

where Θ is the model parameter of auto-encoder models, E(Θ,D) is the supervised pairing (i.e.,
∥y′i −Decy(Encx(x′i))∥22) loss on the labeled data, R(Θ,DUL) is the auto-encoder reconstruction
loss (on unpaired data), and γ, ρ ≥ 0 are regularizaiton parameters. For the algorithm for Wasserstein
training, see Algorithm 1 in Appendix.

2.2 Calculating Wasserstein Distance with the Sinkhorn algorithm
An optimal transport method allows us to find the pairing relation explicitly because of its reliance on
finding the pairing kernel pij between xi and yj . Hence, Wasserstein distance (WD) has been proposed
as a reliable distance measure between distributions. Because it also considers the geometrical
properties of the distributions [17], it serves as a much better measure for learning to match two
different distributions than information distances such as the KL divergence [7]. Our key motivation
is that minimizing Wasserstein Distance allows the model to learn a pairing relation in a explicit and
robust way. The Sinkhorn algorithm is based on the minimization of the following Lagrangian with
the constraint that the marginal distribution is specified [4]; following [5], we constrain the marginal
to be uniform. The Wasserstein distance with entropic smoothing (WD() in Equation 2) is then
defined as WD(Hx,Hy) = ∑n

i=1∑m
j=1 pijc(hx

i ,h
y
j ) where pij is found by:

arg min
P≥0

n

∑
i=1

m

∑
j=1

pijc(hx
i ,h

y
j ) + λ

n

∑
i=1

m

∑
j=1

pij log pij , s.t.
n

∑
i=1

pij = rj ,
m

∑
j=1

pij = ci,∀ i, j. (3)

where λ ≥ 0 is a hyperparameter. In this paper, we let c(hx
i ,h

y
j ) = ∥Encx(xi) − Ency(yj)∥22 and

set rj = 1
m

and cj = 1
n

, respectively. While the original WD requires linear programming (i.e., takes
O(n2) complexity) to solve, the Sinkhorn algorithm [5] finds a smooth solution in only O(nlogn).

2.3 Wasserstein distance with weight decay (WDWD)
It is not trivial to compute WD. Inspired by the well-known Sinkhorn algorithm, we relax the
entropic smoothing constraint further, and reparametrize the transportation plan pij as a function of
its potentials φij . We propose Weight Decay Wasserstein Distance (WDWD) on the latent distribution
Hx andHy:

arg min
P≥0

n

∑
i=1

m

∑
j=1

pijc(hx
i ,h

y
j ) + λ

n

∑
i=1

m

∑
j=1

log2 pij , s.t.
n

∑
i=1

pij = rj ,
m

∑
j=1

pij = ci,∀ i, j, (4)

Assume pij = softmax(φij) and ∑n
i=1∑m

j=1 pij = 1, and let x,y be any high dimensional vector, and
c(⋅) a distance function between them, then we have

n

∑
i=1

m

∑
j=1

pijc(hx
i ,h

y
j ) + λ

n

∑
i=1

m

∑
j=1

log2 pij ≥
n

∑
i=1

m

∑
j=1

pijc(hx
i ,h

y
j ) + λ

n

∑
i=1

m

∑
j=1

(φij − lognm)2, (5)

and LHS equals RHS when we have a maximum entropy distribution, i. e., a uniform distribution
over i, j. Namely, we have φij → lognm for large λ, and we achieve a maximum entropy solution
pij = 1

nm
, and in this case the inequality becomes an equality. Recalling that the Sinkhorn algorithm

[4] is also based on entropic smoothing; hence, our method is qualitatively similar to it. In future,
we will investigate the property of this regularizer in detail, some initial experiments are included in
Appendix. Our algorithm for computing WDWD is given in Algorithm 2 in Appendix.

3 Experiment
We demonstrate the proof of concept on MNIST. We use the 60000 images in the training set as
DUL The rest of the standard testing set (consisting of 9900 images) are used as DTe. We use the
first 100 images of the standard testing set as D. It is on DUL that we want to find an association
relation between the input (images) and target (labels) distributional, i.e. the paring relation. See
Tab. 1 for our result. We notice that baseline model that trains an autoencoder on DUL improves
over the pure supervised model by a large margin, and both Wasserstein matching methods improve
further, suggesting that it learned better than the baseline to make connections between the labeled
set and unlabeled set. In Figure 1, we show how the method scales towards larger proportion of
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Table 1: Performance on MNIST. We set the dimensionality of the latent space to 20; a “−" in the table means
that no distribution matching is used; Unsup. refers to whether we add reconstruction loss to the autoencoders;
Unsup. Acc. refers to the classification accuracy on DUL. Acc. refers to the classification accuracy on test set.

Basis-Sharing Distance Unsup. Unsup. Acc. Testing. Acc.
No - No 62.89% 63.10%
No - Yes 75.14% 76.11%
No Sinkhorn [4] Yes 75.25% 75.77%
No WDWD Yes 73.25% 74.25%
Yes - No 61.66% 61.91%
Yes - Yes 75.99% 77.20%
Yes Sinkhorn [4] Yes 76.48% 77.92%
Yes WDWD Yes 78.83% 79.80%

Table 2: Experiment on CIFAR10. Performance of the cited/proposed methods are shown in difference from the
baseline.

Method Unsup. Acc.(%) Testing. Acc.(%)
Supervised 70.02% 70.81%
Sinkhorn +2.10 +1.91
WDWD +2.01 +3.30

(a) Comparison on Unsupervised Corpus (b) Comparison on Supervised Corpus

Figure 1: Scaling effect of our method. The y-axis is the classification accuracy, and the x-axis is the log-size of
the supervised corpus. The first point refers to sample per label = 5 and the last refers to sample per label = 200.

labeled set. We notice that our method consistently perform better than a baseline with access to
DUL without space sharing or Wasserstein Matching. In particular, when the sample size is 1000 in
total, Wasserstein training achieves 93% accuracy, 5% higher than the baseline. The use of a low-rank
decomposed latent space for distribution matching is also new to this work (see Equation 1), see
Figure 2 for the effect of changing rank. Notice that both models see plateauing effect from around
rank 15; The fact that the benefit of increasing rank plateaus at the order ∼ O(10) seems to suggest
the inherent data complexity of the task. We also perform a study of our method on CIFAR10. We
implement this part exactly as stated in [11]. In particular, we use 4000 images from CIFAR10 as
D. The model we use is Wide-Resnet 28-2 [18]. We notice that both Wasserstein training methods
achieve better accuracy than a model that uses pure supervised data.

Besides these, a few more detailed studies of our method are presented in the Appendix, including a
visualizing of the WDWD transport plan kernel pij (Section 6.2), a more detailed ananlysis of the
plateauing effect of the low-rank decomposition (Section 6.3), a visualization of the learned low-rank
basis (Section 6.4), and a more detailed description of the CIFAR10 experiment with respect to other
methods in the field (Section 6.1).

3



(a) Without Wasserstein Matching (b) With Wasserstein Matching

Figure 2: Performance of the model as we vary the rank of the low rank factorization matrix B (see Equation 1).
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Algorithm 1 Wasserstein Training (WaT)

1: Input: DUL = {{xi}ni=1{yj}mj=1}, and D = {(x′i,y′i)}ri=1.
2: Intialize: Θ, `← 0, α, γ, and ρ.
3: while ` not converged do:
4: hx ← Encx(x) ▷ for all x in a minibatch Dx

5: hy ← Ency(y) ▷ for all y in a minibatch Dy

6: pij ←Wasserstein-Distance(hx,hy) ▷ see alg. 2
7: `← γ∑i,j pij∥hx

i −hy
j ∥

2
2 + ρR(Θ,DUL) + αE(Θ,D) ▷ cf. Eq. 2

8: Update Θ by Adam.
9: Output: `, Θ.

Algorithm 2 Wasserstein-Distance (WDWD algorithm)

1: Input: ({hx
i }n

′

i=1,{hy
j }
m′

j=1)
2: Intialize: φij ← 0, `← 0, λ
3: while ` not converged do:
4: pij ← softmax(φij)
5: `← ∑i,j pij∥hx

i −hy
j ∥

2
2

6: ∆φij ← −∇φij ` − λφij
7: φij ← φij +∆φij
8: Output: `, pij ▷ ` is the computed WD, pij is the transportation plan.

Appendix

4 Hyperparameters

We first train with Adam with lr = 0.01 and decay = 0.001 for 100 epochs and then switch to SGD
with lr = 0.0005, momentum = 0.9 and decay = 0.0001 for 20 more epochs because we find that
starting with ADAM speeds up the convergence a lot and switching to SGD with small learning rate
at the end improves the performance of most models by about 2%; we also notice that the amount of
improvement is independent of the model and so this technique is not used just to give our model
unfair advantage. Also, we do not perform any sort of data augmentation on the supervised set to
simulate a setting in which the labeled data is truly sparse.

5 Pseudo-codes

See alg. 1 for our code to perform Wasserstein training. See alg. 2 for the algorithm to perform
WDWD calculation of the Wasserstein distance.

5.1 Derivation of Eq. (5)

Our modified lagriangian replaces the entropic smoothing with squared log probability. While it
might look bizarre at the moment, but the intention will become clear soon:

LWDWD = λ∑
ij

log2 pij +∑
ij

pijcij + constraint (6)

To understand what this Lagrangian does, we first show that it encourages a maximum entropy solu-
tion, and so qualitatively by minimizing this we should get similar result to that of the Sinkhorn diver-
gence. We write without loss of generality pij in terms of its softmax potentials pij = Softmax(φij):

log pij = φij − log∑
kl

exp(φkl) = φij − 2 logn − log exp(φkl)

where exp(φkl) denotes its average over k, l, and now we can apply Jensen’s inequality:

log pij ≥ φij − 2 logn − φij
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but recall that the softmax probability is invariant to adding a constant in its potential and so we can
subtract away the mean from the potentials and so φij = 0, and plug into the original Lagrangian we
get a variational lower bound of it:

LWDWD ≥ λ∑
ij

(φij − 2 logn)2 +∑
ij

pijcij + constraint (7)

and we see that the term λ∑ij(φij − 2 logn)2 encourages the potentials of our transport plan to be
close to the potentials of a uniform distribution, i. e. the maximum entropy distribution. Also, notice
that the bound is tight exactly when pij conforms to a uniform distribution. In this sense, we expect
similar qualitative behaviour when minimizing over our Lagrangian as compared to the original
Lagrangian.

6 Additional Experiments

6.1 CIFAR10

In this section, we give more information about our CIFAR10 experiments. To allow for fair compari-
son with other models, we implement this part exactly as stated in [11]. In particular, we use 4000
images from CIFAR10 as D. The model we use is Wide-Resnet 28-2. Please refer to [11] for exact
details about the implementation. We show the performance difference between each method and
a supervised baseline. However, due to time and resource constraint, we have not yet been able to
reproduced the baseline performance as stated in [11], and so our result is not directly comparable to
the cited results. Currently, our method is compared to our current best achieving baseline. We notice
that our method is capable of achieving similar performance increase over the baseline as some of the
published methods, but at this stage it is hard to conclude whether the improvement is significant.
While the original paper perform 1000 grid search on each of the method, our results in this section is
very preliminary and only result from 5 to 10 rounds of hyperparameter tuning. In the full paper, we
will present a complete and much more detailed version of this experiment.

Method - Testing. Acc. (%)
Supervised - 79.74
Π-M [8] - +3.89
Mean Teacher [13] - +4.39
VAT [9] - +6.40
VAT-EM [9] - +7.13
Pseudo-label [6] - +2.48

Ours Unsup. Acc.(%) Testing. Acc.(%)
Supervised 70.02% 70.81%
Sinkhorn +2.10 +1.91
WDWD +2.01 +3.30

Table 3: Experiment on CIFAR10. Performance of the cited/proposed methods are shown in difference
from the baseline.

6.2 Effect of different strengths of Weight Decay

In this section, we study the effect of the strength of weight decay on the Wasserstein potential matrix.
We show the effect of larger strength has the effect of making the joint distribution “softer". This
shows that using weight decay on the potential matrix has qualitatively the same effect as tuning the λ
parameter in the Sinkhorn divergence formulation. Just like increaing λ makes the learned Sinkhorn
distribution “softer", using a stronger weight decay does similar thing. See fig. 3. This shows that the
weight decay formulation is qualitatively similar to the Sinkhorn algorithm formulation, in which a
special parameter can be tuned to control the strength of entropic smoothing.

6.3 The Effect of Rank

Since the rank of the latent space decomposition is a hyperparameter for our model, we explore the
effect of varying the rank on the performance of the model. In fact, the result is quite intuitive to
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(a) Joint distribution when the weight decay strength
is 0.1

(b) when the strength is 0.9

Figure 3: Comparison of the effect of using different strength of weight decay to calculate the joint
distribution matrix of a set of 25 input pictures in the optimal transport formulation. The x-axis refers
to the input images and the y-axis refers to the target labels. Note that in the MNIST expriments we
do not force every label to be assigned a probability mass since there is degeneracy in the label (a set
of 25 target might contain multiply many same label).

(a) Without Wasserstein Matching (b) With Wasserstein Matching

Figure 4: Performance of the model as we vary the rank of the low rank factorization matrix B
(see Equation 1). Notice that both models see plateauing effect from around rank 15; suggesting the
intrinsic rank of the task.

expect. We expect that with very low rank, the model would not have enough capacity to capture the
dynamic of the task and the richness of the input and output distribution; with high rank, we would
have much larger parameter to explore than necessary and so finding the optimal solution would be
hard and so the performance should plateau or even decrease. For this part of the experiment, we fix
the dimension of the latent space to be 50 and we vary the rank of the latent representations in this
space. For the result see part (a) of 2 (w/o wasserstein distance) and part (b) of 2 (w/ wasserstein
distancec), and the model works just as we expected in both cases.

Also, we find that in both settings, the performance increase stagnates around rank 10 to rank 15,
suggesting at the intrinsic complexity of the task. This also agrees with what one would expect. For
simple tasks such as MNIST, the number of subspaces needed to represent the data distribution should
be close to the number of actual classes since there is not much intra class variation.

6.4 Visualization of the Learned Low Rank Basis

In this section, we visualize the learned low-rank basis of rank 15 in a 50 dimensional space. The low
rank basis is initialzized with 0 mean and 0.1 variance gaussian noise. We calculate the cosine angle
between the 15 basis vector and plot the heatmap in fig. 5. We hypothesize that this is because with
low rank approximation, the model has learned correlation and similarity between different classes
(for example, images with label 5 have greater similarity with 3 and less so with 1) and so it captures
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(a) Cosine similarity of the basis before training (b) at Epoch 120

Figure 5: Heatmap for rank 15. Notice that before training the off diagonal elements are much darker,
averaging around 0.13; after the training the off diagonal elemnents are brighter, with similarity
averaging around 0.17.

(a) Cosine similarity of the basis before training (b) at Epoch 120

Figure 6: Heat map for rank 25. Notice that for rank 25 the difference between the two plots begin to
diminish , with both cosine angle averaging around 0.15.

the interaction between the different labels better. Also, this effect diminishes as the rank is increased
as we enter into the non-low-rank regime; possibly because such correlation is harder to learn with
higher dimensions, and this is why rank 15 performs better than rank 25 (see fig. 2 in the preceding
subsection). See fig. 6 for comparison.
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