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Abstract

In this paper we perform an empirical evaluation of different inference methods for
Bayesian neural networks (BNN). We compare two major approaches, including
Hamiltonian Monte Carlo (HMC) and Variational Inference (VI). Both methods
are implemented using Tensorflow Probability Toolbox. We first evaluate how
different factors involved in HMC and VI affect the inference results, focusing on
classification problem. We then show benefits of Bayesian inference in general-
ization over point estimation approach. Finally, we provide a way of quantifying
uncertainty based on Bayesian inference.

1 Introduction

Over the last few years, there is a resurgence of interest in Bayesian neural networks (BNN) [20, [18]]
as it provides a promising direction to address the limitation of neural networks in generalization
and overlook of uncertainty [6]. BNN is a probabilistic extension of neural networks. The key of
BNN is treating parameters in original neural networks as random variables, whose distribution is
specified by the prior distribution. The benefits of such extension is as follows. First, BNN reduces
the risk of overfitting through model averaging. Second, BNN can quantify the uncertainty of model
prediction. We consider two major approaches to perform Bayesian inference for BNN. The first
one is Hamiltonian Monte Carlo (HMC). The second one is variational inference (VI). After a brief
discussion of the Bayesian inference problem and the two methods, we empirically evaluate different
factors that need to be considered in using HMC and VI during inference. We compare the results
with point estimation approach. Finally, we provide an analysis of estimated uncertainty.

2 Bayesian Inference for BNN

We first provide a general description of BNN. Suppose we have the observation X and the associated
target value Y, BNN defines a probabilistic conditional distribution P(Y'| X, 6) using neural networks
with parameter §. Furthermore, 6 is also treated as a random variable with a prior distribution P (8|
and « is the hyperparameter. Given a set of training data D = {X;, Y;}¥, and a query of testing
data X, the goal of Bayesian inference is to compute the conditional posterior distribution of target
variable Y as follows.

P(Y'|X',D,a) = /P(Y’\X',H)P(0|D,a)d9 (1)
6

A full Bayesian treatment can also be used where « is also modeled as a random variable and to
be integrated out together with 6. To estimate the value of target variable, we solve the following
optimization problem.

M
1
Y* = argmax P(Y' = y| X', D, a) ~ arg max — E P(Y'=y|X',0,),0; ~ P(O|D,a) (2)
Y v M=
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The key to solve Eq. (2) is to generate samples from the posterior distribution P(8|D, ). For BNN,
the posterior is intractable due to the complex nonlinearity introduced by neural networks. Thus
approximate inference methods are needed. For classification, the target variable Y € {1,..., K} isa
discrete-valued variable, representing the class label. K is the total number of classes. We assume Y’
follows categorical distribution.

where p; > 0, Zfil p; = land fxn(X;0) is a neural network with a softmax output layer. Solving
Eq. (2) is straightforward as we only need to evaluate the probabilities for each one of K classes and
choose the one with the largest probability.

2.1 Computing Uncertainty

One of the major benefit of using BNN is to quantify the uncertainty associated with prediction. We
quantify the uncertainty of inference results using marginal covariance of target variable, which can
be shown to decompose into two terms.

VIY|X] = Eg[VIY|X, 0] + Vo [E[Y]X, 6]] )

The first term captures the intrinsic uncertainty in data (aleatoric uncertainty [13[]). The second
term captures the uncertainty among different model parameters (epistemic uncertainty [13[]). In
practice, E[Y|X, 6] and V[Y'|X, 0] are readily available from the prediction of model given one
particular instance of model parameter. Then V[Y|X] can be computed using results of different
model parameters. Finally, we compute the total uncertainty using the trace of total covariance i.e.,
UX) =Y, VIY|X]a.

3 Inference Methods

Hamiltonian Monte Carlo (HMC) [21] is a variant of MCMC method, which uses gradient of
Hamiltonian function to update the Markov chain. HMC alleviates random walk behavior and allows
the chain to explore the target distribution more efficiently. HMC and its extensions are widely
used for inference of BNN [21} 24, [3| [8]. In the context of sampling from posterior distribution,
Hamiltonians H (6, r) is a function defined over the BNN parameter 6 and auxiliary variable r.

H(0,r)=U0)+ K(r), U(6) £ > log P(Y|X,0) + log P(6]a) (5)
{X,Y}eD

where K (r) is a quadratic function of r [21]]. Following Hamilton’s equations, we can map a state i.e.,
value of 0, r at time ¢ to a state at time ¢ + s. Starting from some initial state, we can compute value
of 6 at different time ¢. Neal [21] proved that the stationary distribution simulated by Hamiltonian
defined by Eq. (9) is the posterior distribution P(0|D, ).

Variational Inference (VI) [11] is an approximate inference method that converts the inference
problem into an optimization problem. The key idea is to introduce a variational distribution g(6|t)),
where 1) is called variational parameters. g is usually chosen to be tractable and easy to compute.
For example, mean-field variational method assumes fully factorized g over 6. The value of v is
estimated by solving the following optimization problem.

v = argmin KL(g(0])]|P(O]D. ) ©

= argmax Fyg|y) [log P(D, 0]cx)] — Eqy(o)4)[log q(0]¢)]

where K L(-||-) is the Kullback-Leibler divergence. After we find the optimal *, the samples of
0 are obtained through sampling 6 ~ ¢(f|v). In case of Gaussian mean-field method, ¢(0|¢) is
fully factorized over individual parameter. The sampling of all parameters reduces to sampling each
parameter from the respective Gaussian distribution. Variants of variational inference have been
proposed for BNN inference [9, 19} 22| 2]



4 Experiments

In this section, we compare different inference methods on classification task. We use MNIST hand-
written digits dataset [16] for all the experiments. We use 5500 images from training set and all the
10000 images from testing set. To test generalization, we add Gaussian noise with standard deviation
0.3 to the testing images whose values are scaled linearly between 0 and 1. We implemented a BNN
with two convolutional layers and two fully connected layers using Tensorflow [1]] and Tensorflow
probability toolbox [4]]. The details are in Appendix A. We summarize all the factors considered in
Table[I] Based on our results, we also provide a guideline to configure all the factors. The detailed
results are provided in Appendix B.

Table 1: Performance factors evaluated in different inference methods (See Appendix B for details).

Method [ Factors | Guideline

Prior of model parameters
Initialization of MC state
Burn-in iterations

Standard Normal with small variance
Sample from prior
Determine by within-sliding window

HMC performance
Number of samples collected Proportional to parameter size
Step number L and size € Critical to performance. Tune by run-
ning small length chain and observing
acceptance rate and performance
Prior of model parameters Standard Normal with small variance
Variati Initialization of variational parameters | Sample from prior
ariational

Fixed threshold to the loss
Moderate (parameter size independent)

Optimization termination criterion
Number of samples collected

4.1 Comparison among Different Inference Methods

With all the factors in consideration, we perform a comparison in classification performance between
HMC, VI, MC dropout [7], and two point estimate methods. We found that the performance of HMC
is subject to the choice of leapfrog step size € and number L. We tune these parameters by running
the chain for a small number of iterations and observe the acceptance rate and performance. The final
choice are € = 0.001, L = 10. In terms of speed, ML and MAP are the fastest. VI and MC Dropout
are slightly slower due to the extra cost for performing inference using multiple samples. HMC is
much slower than other four methods mainly due to the need to compute gradient over the entire
training dataset at each leapfrog update. The time increases linearly with the number of leapfrog
steps. One way to improve this is to use stochastic scheme such as SGLD [24] and SGHMC [3]. All
the methods are repeated for 10 times with different random initializations. Overall, VI provides
a more competitive performance than HMC. It also allows better scaling with dataset and model
size. However, VI increases the amount of parameters by a factor of two due to the use of variational
parameters. For HMC, stochastic scheme must be used in order to scale up to large dataset despite
that it is easier to implement and does not require additional parameterization cost. SGHMC improves
HMC in both speed and final accuracy. MC dropout is comparable with VI as it can be considered as
an approximation to VI. We use a dropout rate 0.1 as a larger rate yields worse performance in our
experiment. Compared to point estimation approaches, all Bayesian inference methods show better
accuracy and generalization. In particular, in the noisy test, point estimation results drop significantly,
while Bayesian inference results remain comparable with the clean test. This shows the superior
generalization capability of BNN with Bayesian inference. Furthermore, Bayesian inference have
additional benefits in providing uncertainty measure as discussed in the next section.

Table 2: Compare the classification performance of different methods under different testing data. Each method
is repeated for 10 times with different random initializations.

Method ML MAP VI MC dropout HMC SGHMC
Clean test (Acc.£Std.) | 97.26£0.22 | 97.51+0.19 | 97.76+0.26 | 97.71+0.16 | 97.30+0.20 | 97.67+0.08
Noisy test (Acc.£Std.) | 79.65+0.28 | 82.70+0.15 | 96.60£0.21 | 93.93£0.25 | 96.15+0.11 | 96.56+0.10
Time per trial (h) 0.5 0.5 0.6 0.7 4 1.5




4.2 Analysis of Uncertainty

As shown in Section 2.1} the uncertainty consists of two terms, namely the data uncertainty and
the model uncertainty (both are represented by the covariance). We first analyze each individual
uncertainty, using the results obtained by variational method. In classification task, both terms in
Eq. @) are K x K matrices where K = 10 is the total number of classes. From Figure [T{a){I[b),
we see that the data uncertainty is much larger than model uncertainty, indicating a small difference
among different model predictions. The major source of uncertainty comes from the data. We can also
compare the covariance with confusion matrix in Figure[T[c). Unlike confusion matrix, computing
covariance does not need the ground truth labels. Yet it provides indication of what classes are easy
to be confused with others. For example, digit ‘9’ has high covariance with digit ‘7’ and ‘4’ in Figure
[T[@). This is consistent with the confusion matrix, where digit ‘9" has high confusion with ‘7" and ‘4’
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Figure 1: (a) Average testing data uncertainty. (b) Average testing model uncertainty. (c) Confusion matrix.

We then analyze the uncertainty and model performance. Figure[2fa)-(b) show two different ways
of analysis. In Figure[2a), we quantize the uncertainty into 10 different levels. Then we plot the
error rate within each different levels. In Figure 2b), we plot the error rate among data with at most
certain level of uncertainty. It is clear that as the uncertainty increases, the error rate increases as
well. We can use this uncertainty value to help us with the decision of classification. For example,
we can consider top-2 result if the uncertainty value is high. Finally, we plot the uncertainty within
each individual class in Figure 2Jc). We sort the uncertainty level from low to high and plot the
corresponding accuracy of the class. This gives us an indication on which class is more likely to be
mis-classified. For example, ‘9’ has the highest uncertainty. This is consistent with intuition that
hand-written ‘9’ can look similar to ‘1°, ‘4’ and ‘7°. Again, the accuracy decreases as the uncertainty
value increases.
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Figure 2: (a) Error rate within each uncertainty level. (b) Error rate with uncertainty up to different levels. (c)
Class-wise uncertainty value. Left vertical axis is for the bar chart. Right vertical axis is for the curve plot.
S Conclusion

We evaluated two commonly used approximate inference methods for BNN inference, based on
which a guideline to adjust different factors of inference methods is developed. We believe this is



a useful guideline when applying different approximate inference methods for BNN. We further
demonstrate the benefit of performing Bayesian inference by showing better performance in accuracy
and generalization in classification task. In addition, the proposed estimation of uncertainty provides
useful information for decision-making.
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Appendices

A Implementation

We implement the BNN model using Tensorflow [[1] and Tensorflow probability toolbox [4]]. Specif-
ically, we use a model with two convolution layers with ReLU activation function, followed by a
max-pooling layer. The output of the last convolution layer is flattened to a vector and input to
two fully connected layers. The last fully connected layer is the actual output. The total number
of parameters may vary depending on the number of filters in convolution layer and nodes in fully
connected layers. We use a model with about 20K parameters for most of the experiments except
when we evaluate the effect of model size. The model architecture is shown in Figure 3]

Images: X
Labels: Y

Figure 3: Architecture of CNN model. For classification task, a softmax transformation is further
applied to FC2 to produce the output. For regression task, FC2 is the final output.

B Experiment Details

B.1 Experiment with HMC

The use of HMC requires careful tuning of the leapfrog step size and step number. We postpone the
tuning for comparison among different inference methods and for now we fix the HMC parameter
which provides reasonable results and evaluate other factors. First, we evaluate the burn-in iterations.
Determine the mixing condition of MCMC remains an open research question. Here we use an
empirical criterion based on final performance of the model to make decision. The intuition is
that once the burn-in period is completed, The chain should be mixed in a stationary distribution.
Therefore, we expect a relative stable performance after the burn-in period. In order to measure the
stableness of performance, we used a sliding window based scheme, which is illustrated in Figure 4]
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Figure 4: Sliding window along an MCMC of length N. The red bounding box indicates a sliding
window. The samples in blue are the ones selected to perform Bayesian inference. The index of
starting sample of the sliding window is called position. The total number of samples contained in a
sliding window is called length. The difference between consecutive sliding windows is called gap.
The difference between consecutive selected samples are called skip.

By varying the length of sliding window, we can get different inference results at the same position.
We fix the value of gap and skip to be 10. If the chain is mixed, we expect the variation of results
among different sliding window lengths to be small. We determine the burn-in iteration if the variation
is smaller than some pre-defined threshold.

Figure [5] shows the change of variation versus the number of MCMC iterations with 10 different
initializations of MCMC chain. The accuracy and burn-in iterations under different thresholds are
listed in Table 3] The results indicate that the performance becomes stable when we reach the
threshold 1e — 4. Later, we use this threshold for burn-in.
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Figure 5: HMC inference burn-in iterations under different termination threshold. Different color
curves indicate different random initializations. (Best view in color)

Table 3: Results of 10 runs of HMC in the format of average value + standard deviation.

Threshold le-2 Se-3 le-3 Se-4 le-4 5e-5
Accuracy | 89.2440.81 | 90.98+1.05 | 93.36+£0.77 | 94.01+£0.41 | 95.014+0.30 95.01+0.30
Burn-in # 730+102 1305£201 3706+£833 | 5329+£1850 | 1549844679 | 15498+4680

We also visualize the samples at different iterations of HMC in Figure[6] We visualize the scatter plot
of two selected dimensions of the entire set of parameters. We color coded the the sample so that the
brighter the color, the later the iterations of the sample. We use red to indicate the MAP estimate of
the parameters. From the plot we observe a distribution of samples containing the MAP estimate.
The inference is performed using multiple samples of parameters instead of a point estimate.

Second, we evaluate the number of samples used to perform inference. We continue to run the chain
after the burn-in iterations. Then we compute the performance of the model with different numbers of
samples collected after burn-in. Again, the experiment is repeated for 10 times with different random
initializations and the results are listed in Table[d We observe that 1) in general, the larger number
of samples, the better the performance. While the performance increases 0.21% from 500 to 1000,
the increase becomes 0.02% as we go from 5000 to 10000. 2) the standard deviation remains steady
around 0.25%, indicating different initializations will roughly affect the final results uniformly under
different numbers of samples. This also indicates that the performance change within 0.25% is not
likely to be statistically significant. For the remaining experiment, we use 10000 examples to perform
inference.

Third, we vary the value of prior distribution on parameters with fixed burn-in iterations and number
of samples to perform inference. Typically, NN parameters are small numbers that are perturbed
around 0. So for the prior distribution, we consider a Gaussian prior distribution with mean 0 and
standard deviation 0. We only vary the value of 0. The results are summarized in Table[5} We see
that a prior with smaller standard deviation is preferred. We can also observe that in Figure[6] the
variance of sample values are indeed very small.
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Figure 6: Sample value of selected dimensions along the chain simulated by HMC. Darker color dots
are obtained at earlier iterations. Red dot is the MAP estimate (Best view in color).



Table 4: Results of different number of samples used for inference after burn-in.

Sample # 100 500 1000 2000 5000 10000
Acc.£Std. | 94.754+0.29 | 95.02+0.22 | 95.23+0.23 | 95.34+£0.25 | 95.434+0.24 | 95.454+0.27

Table 5: HMC performance under different prior of parameters with 10 random initializations.

o 0.01 0.1 1 10
Acc. £ Std. | 95.45£0.27 | 95.50+0.33 | 95.17+ 0.27 | 94.57+0.36

Finally, we vary the size of the model and the results are listed in Table[6] Generally speaking, a
larger model has a better performance. But the improvement becomes marginal once the model is
large enough, considering the fact that we only used 5500 training images.

Table 6: HMC performance of different model size with 10 random initializations.

Parameters # 524 1922 3578 7370 13818 20494
Acc. £ Std. | 84.83+2.33 | 94.394+0.46 | 94.68+0.35 | 95.25+0.33 | 95.174+0.17 | 95.50+0.32

B.2 Experiment with Variational Method

We use one particular variant of variational inference method called Flipout [25], which has the
advantage of performing inference efficiently on large-scale neural network models. The algorithm
is implemented in Tensorflow probability toolbox [4]. In the first experiment, we evaluate how
does the performance change with the number of samples and the stopping criterion of variational
optimization. We use the same model architecture as used in HMC experiment. Figure[7((a) shows the
-ELBO value versus the optimization iterations. We can see from the red moving average curve that
the optimization converges between 20000-30000 iterations. Figure [7(b-d) shows the classification
accuracy on testing data under different numbers of samples that are used to perform inference. The
Bayesian inference follows the description in Section[2] We observe that the performance becomes
stationary around 5000 iterations. Towards the end of the optimization, the inference results obtained
by different numbers of samples are similar.

Then we evaluate how initialization on the variational parameters affect the performance by repeating
the experiment for 10 times with random initialization on variational parameters. Table [7]summarizes
the average accuracy and standard deviation at different numbers of optimization iterations and
different numbers of samples used to perform Bayesian inference. We see the results become stable
after 10000 iterations. In addition, the performance becomes stable with 50 samples as the difference
between 50 and 100 samples is very small. Due to the use of mean-field assumption, 100 independent
samples for each parameter seems sufficient.

For the second experiment, we evaluate the effect of prior distribution on parameters. We fix the
number of iterations to be 50000 and the number of samples to be 100. Same as HMC experiments,
we only vary the variance of prior distribution. The results are summarized in Table[8] Again, each
experiment is repeated 10 times to account for random initializations. We observe that a smaller prior
is preferred for better performance, which is similar to HMC.

We further visualize the distribution of parameters at the end of the optimization. As we assume
Gaussian mean-field ¢ function. Therefore, the posterior distribution of 6 is approximated by a
Gaussian with variational parameters ¢ = {u, o }. We plot the histogram of the values of x and o for
parameters in each layer under different prior o as shown in Figure[8] These figures provide a rough
estimate of how the model parameters will distribute. We observe that 1) the majority of the weights
has an expected value that is close to 0. 2) the majority of the weights has a small standard deviation.
3) the choice of prior has more noticeable effect on some of the layers than the others. In particular,
the last convolution layer and the first fully connected layer. The standard deviation of convolution
layer tends to become larger if the prior oy is larger. The standard deviation of fully connected layer
has a small portion of mass at the initial prior value. Overall, the standard deviation of the majority
of parameters are very small regardless the choice of prior. This also explains the close performance
obtained under different numbers of sampled parameters.
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Figure 7: Variational inference based classification results on MNIST dataset.

Table 7: Results of 10 repeat experiments with randomly initialized variational parameters.

Iteration # 1 1000 2000 5000 10000 20000 50000
5 10.59+1.65 | 95.86+0.21 | 96.53+0.25 | 97.00£0.08 | 97.13+0.07 | 97.18%+0.11 | 97.18+0.07
Sample # 10 | 10.79+1.89 | 96.12+0.27 | 96.66+0.24 | 97.07+0.08 | 97.20+0.09 | 97.21+0.13 | 97.20+0.08
50 | 10.82+1.86 | 96.30£0.20 | 96.79+£0.23 | 97.17£0.09 | 97.25+0.09 | 97.22+0.09 | 97.21+£0.10
100 | 10.90£1.91 | 96.32+0.22 | 96.83£0.23 | 97.19£0.08 | 97.24+0.08 | 97.22+0.10 | 97.21£0.09

Table 8: VI results under different prior of parameters with 10 random initializations.

0.1

1

10

100

o 0.01
Acc.£Std. | 97.214+0.09

97.76£0.26 | 97.54£0.14 | 97.58+0.16 | 97.52+0.15

B.3 Use of Uncertainty

There are several directions of using uncertainty. First, through analysis and visualization, uncertainty
can be used to facilitate decision making. Multiple possible results should be considered in case the
prediction has a high uncertainty. Second, uncertainty can be used to improve model performance
such as using uncertainty to weight the loss function in multi-task learning problem [14]. Third,
uncertainty can be used in active learning problems to query a small set of labels from a large
set of unlabeled data [[12| [10]. Fourth, uncertainty can be used to detect anomaly. The anomaly
can be viewed as data that is from a distribution outside the training data distribution [[15]. Fifth,
uncertainty can be used to train model against adversarial attacks, which are data designed to force
mis-classification. Some recent work along this direction includes [15, 17, 23]].
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Figure 8: Variational parameters distribution after optimization.
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