
Bayesian Wireless Channel Prediction for
Safety-Critical Connected Autonomous Vehicles

Mahmoud Elnaggar
University of Virginia

mae3tb@virginia.edu

Kamin Whitehouse
University of Virginia

whitehouse@virginia.edu

Cody H. Fleming
University of Virginia

fleming@virgina.edu

Abstract

We present a Bayesian deep learning approach to predict the quality of the wireless
channel used by connected autonomous vehicles. The proposed approach captures
the epistimic uncertainty of the wireless channel prediction model which is es-
sential for decision making and motion planning algorithms in order to guarantee
safe operation. We leverage a Bayesian Long Short-Term Memory (LSTM) net-
work with Monte-Carlo (MC) dropout to estimate the posterior distribution of the
packet delivery rate of non-stationary wireless channels. We train and validate the
proposed approach on a dataset we generate in an indoor test-bed.

1 Introduction

The age of autonomous mobile systems has arrived. Self-driving cars have clocked over 10 million
miles on public roads [6]. Enabling Wireless co-ordination between autonomous mobile vehicles can
allow them reach high performance levels that would not otherwise be safe (e.g. achieving closer
distances at higher speeds). A platoon of connected mobile vehicles or drones can move around blind
corners at high speed by leveraging the sensing capabilities of the agents ahead of them [11].However,
there is currently no methodology for providing safety guarantees for such high-speed states under
non-stationary wireless channels. Wireless signals are transmitted through unguided media such as
air or water and are therefore greatly affected by the surrounding environment. As mobile agents
move through a physical environment, especially complex indoor environments but also outdoor
and urban environments, changes in the environmental context produce non-stationary effects on
the channel: future channel properties are not well predicted by those of the past. In this work, we
focus on capturing the uncertainty in non-stationary wireless channel predictions which is essential to
perform safe motion planning and control of connected autonomous vehicles. Traditional deep neural
can quickly overfit the training data, especially LSTM networks [12], and/or provide over-confident
predictions which may not be safe for safety-critical applications like autonomous driving. However,
deep Bayesian neural networks have recently showed promise in capturing the epistimic uncertainty
of their models which is important for safety-critical applications [3, 10, 2, 7, 9, 8]. We propose to
use a Bayesian Recurrent Neural Network (RNN) that performs variational inference approximation
via Monte Carlo (MC) dropout technique [4]. At each time step, the Bayesian RNN generates the
predicted value of the packet delivery rate (PDR) of packets transmitted over the wireless channel
from one vehicle to its connected neighbor over a future time horizon as well as the uncertainty of
the predicted value.

1.1 Problem Formulation

Problem 1 Given a platoon of N vehicles moving in a static environment. Assume that at each time
t = t0, each vehicle i has accurate estimates of its current state and the prediction of its future states
over a time horizon xi(t),∀t ∈ [t0, t0 + T ]. Assume that every leading vehicle i− 1 in the platoon
sends its current and future state estimates periodically to the following vehicle i. The objective is,
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to estimate the posterior distribution of packet delivery rate over a future time horizon T , given the
current observations p̂(PDRi(t = t0)|Oi(t = t0)) at each follower vehicle i.

2 Methods

2.1 Bayesian LSTM Architecture

We propose to use a Bayesian Deep learning-based approach that comprises a Bayesian Long Short-
Term Memory (LSTM) Network which estimates the posterior distribution of the output (PDRi)
over a finite time horizon T . The input to the Bayesian LSTM network is a sequence of length Sl the
following observations Oi at each LSTM time step:

• The current position, orientation, the linear and angular velocity of the ith vehicle
(xi, yi, ψi, vi, ψ̇i).
• The current position, orientation and velocity of the leading vehicle

(xi−1, yi−1, ψi1 , vi−1, ˙ψi−1).
• The predicted future states of both vehicles over a time horizon T .
• The current measurements of the wireless channel (CSI) collected at the ith vehicle.

The model architecture is a Bayesisn LSTM network. We approximate the variational inference by
implementing MC dropout in LSTM network with the same network units dropped at each time step,
randomly dropping inputs, outputs, and recurrent connections as described in [4].

The intuition behind using this approach is that the on-board sensors of autonomous vehicles are
already being used to capture the static and dynamic features of the physical world, including the
dynamic motion related to the vehicles themselves which have a great affect on the dynamics of
the wireless channel. Our approach leverages these sensor data, the predicted motion paths of the
vehicles, and the current state of the wireless channel to come up with not only the prediction of the
future packet delivery rate of the wireless channel, but also with the uncertainty of that prediction.
This approach can be generalized to include scenarios with moving objects in the environment by
capturing and tracking these objects using the on-board sensors (e.g. LIDAR, Radar, Cameras) and
input the tracked features to the Bayesian LSTM network to represent the current state of the physical
world.

2.2 Dataset Generation

To the best of our knowledge, there is no publicly available data set that contains information about
the motion states of connected vehicles as well as the variation of the wireless link quality between
them as they move. In order to build our own dataset to train and validate our model, we use an indoor
test-bed as shown in Figure 1. The test-bed is a 5m×4m×3m arena covered by a millimeter accurate
motion capture system (OptiTrack 1) and includes racing tracks for small sized robots/miniature

1https://optitrack.com/products/prime-17w/

Figure 1: Data collection framework.

Figure 2: Example showing the signifi-
cant variability in PDR due to a dynamic
physical environment.
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(a) (b) (c)

Figure 3: (a) The traditional LSTM network performs an order of magnitude better than KNN-based
approaches. (b) A snapshot consecutive outputs of the Bayesian LSTM over time. PDR black line
represents the mean of the mean and shaded grey zones represent 1,2 and 3 standard deviations of the
estimated posterior.(c) A zoomed-in snapshot of the validation data showing the benefit of predicting
uncertainty: the prediction uncertainty increases when the network’s prediction is less accurate and
vice-versa.

vehicles. We use two turtlebots, each equipped with an Intel NUC device that contains a commodity
5300 Wifi adapter used for communication between the two robots. We use the modified firmware [5]
of the Wifi adapters in order to capture the Channel State Information (CSI) at the follower turtlebot.
The OptiTrack system provides position and orientation information of the two turtlebots. We use the
on-board wheel encoders on each turtlebot to provide linear and angular velocity information. All
the data is synchronized and collected at a single computing device at the receiver. We use Robotic
Operating System (ROS) framework to develop a data acquisition node that collects the data and build
datasets to be used for training and validating the proposed Bayesian LSTM model. This method of
dataset generation can be generalized for platoons of autonomous cars applications by using crowd
sourcing techniques, recording features of static and moving objects extracted from each car’s sensors
and wireless adapters and uploading them to the cloud.

3 Experiments

We set up an environment in our test-bed arena that imposes fluctuations in the wireless channel
quality values over time by removing the antennas from the Intel NUC devices and thus reducing
the transmission power greatly relative to the area of the arena. Next, we collected data by moving
one turtlebot in random motions around the arena with variable speeds and directions. We used
a transmission frequency ft = 50Hz. We recorded the PDR values over a time window T = 4s.
Figure 2 shows that PDR values vary significantly between 20% and 90% as only one turtlebot moves
randomly inside the arena. We used a Bayesian LSTM network with a sequence length Sl = 20, that
contains one hidden layer of 128 LSTM cells. The dropout probabilities that generated best achieved
performance were = 0.3 each. We used 50 Monte Carlo samples to generate the mean and variance
of the estimated PDR posterior. We recorded a dataset of 24,000 data samples. We used 80% of the
dataset for training and the rest for validation. First, we compared the performance of a traditional
(non-Bayesian) LSTM network with a revised version of the KNN-based approach presented in [1]
using the same features for prediction. Figure 3(a) shows that our trained LSTM network achieved a
median prediction accuracy of +/-5% which is an order of magnitude better than performance of the
KNN-based approach. Next, we trained the Bayesian LSTM network for 200 epochs. The network
achieved an RMSE of 0.04 over training data and 0.17 over validation data. Figures 3 (b-c) show how
the Bayesian LSTM outputs high uncertainty of less accurate PDR predictions and low uncertainty of
more accurate ones.

4 Conclusion & Discussions

We presented a Bayesian deep learning approach to predict the quality of non-stationary wireless
channels between moving vehicles along with uncertainty in prediction. Possible extensions of this
work include training and testing the Bayesian LSTM model in increasingly complex environments,
including outdoor environments which would require relying on more sensors in order to capture the
dynamic environment (e.g. LIDAR, Radar, Cameras).
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