
Bayesian Deep Convolutional Networks with Many
Channels are Gaussian Processes

Roman Novak ?, Lechao Xiao ∗? , Jaehoon Lee ∗†, Yasaman Bahri ∗†, Greg Yang◦,
Daniel A. Abolafia, Jeffrey Pennington, Jascha Sohl-Dickstein

Google Brain, ◦Microsoft Research AI

{romann, xlc, jaehlee, yasamanb, gregyang@microsoft.com,
danabo, jpennin, jaschasd}@google.com

1 Introduction

There is a previously identified equivalence between wide fully connected neural networks (FCNs)
and Gaussian processes (GPs) [29, 25, 27, 26] (see §A.2 for details on related work). This equivalence
enables, for instance, test set predictions that would have resulted from a fully Bayesian, infinitely
wide trained FCN to be computed without ever instantiating the FCN, but by instead evaluating the
corresponding GP. In this work, we derive an analogous equivalence for multi-layer convolutional
neural networks (CNNs) both with and without pooling layers (§2, §A.6), and achieve state of the art
results on CIFAR10 for GPs without trainable kernels (Table 2). We also introduce a Monte Carlo
method to estimate the GP corresponding to a given neural network architecture, even in cases where
the analytic form has too many terms to be computationally feasible (§A.5).

Surprisingly, in the absence of pooling layers, the GPs corresponding to CNNs with and without
weight sharing are identical (§3.1). As a consequence, translation equivariance in finite-channel
CNNs trained with stochastic gradient descent (SGD) has no corresponding property in the Bayesian
treatment of the infinite channel limit – a qualitative difference between the two regimes that is not
present in the FCN case. We confirm experimentally, that while in some scenarios the performance
of SGD-trained finite CNNs approaches that of the respective GPs as the channel count increases,
with careful tuning SGD-trained CNNs can significantly outperform their corresponding GPs (§3.3),
suggesting advantages from SGD training compared to fully Bayesian parameter estimation1.

2 Many-channel Bayesian CNNs are Gaussian processes

2.1 Notation. Consider a series of L convolutional hidden layers, l = 0, ..., L− 1. The parameters
of the network are the convolutional filters and biases, ωlij,β and bli, respectively, with outgoing
(incoming) channel index i (j) and filter relative spatial location β = −k, ..., k. Assume a Gaussian
prior on both the filter weights and biases, ωlij,β ∼ N

(
0, σ2

ω/
[
nl (2k + 1)

])
, bli ∼ N

(
0, σ2

b

)
. The

weight and bias variances are σ2
ω, σ

2
b , respectively. nl is the number of channels in layer l, 2k + 1 is

the filter size. Let X denote a set of input images (training set or validation set or both). The network
has activations yl(x) and pre-activations zl(x) for each input image x ∈ X ⊂ Rn0×d, with input
channel count n0, number of pixels d (we consider 1-d convolution without loss of generality), where

yli,α(x) ≡
{

xi,α l = 0
φ
(
zl−1
i,α (x)

)
l > 0

, zli,α(x) ≡
nl∑
j=1

k∑
β=−k

ωlij,βy
l
j,α+β(x) + bli. (1)

Finally, we define the empirical covariance matrix Kl of the activations yl as

[
Kl
]
α,α′

(x, x′) ≡ 1

nl

nl∑
i=1

yli,α(x)yli,α′(x
′). (2)

∗Google AI Residents (g.co/airesidency). ?, † Equal contribution.
1This work is an extended abstract of Novak et al. [32], which contains a more detailed presentation.

Third workshop on Bayesian Deep Learning (NeurIPS 2018), Montréal, Canada.

mailto:romann@google.com
mailto:xlc@google.com
mailto:jaehlee@google.com
mailto:yasamanb@google.com
mailto:gregyang@microsoft.com
mailto:danabo@google.com
mailto:jpennin@google.com
mailto:jaschasd@google.com
https://g.co/airesidency

Please refer to §A.9, §A.6, and Figure 5 for more details on notation.

2.2 Derivation. As can be seen in Equation 1, the pre-activations zl are an affine transformation
of the multivariate Gaussian

{
ωl, bl

}
, specified by the previous layer’s activations yl. An affine

transformation of a multivariate Gaussian is itself a Gaussian with a covariance matrix that can be
derived straightforwardly. Specifically,(

zl|yl
)
∼
(
zl|Kl

)
∼ N

(
0,A

(
Kl
)
⊗ Inl+1

)
, (3)

where Inl+1 is an nl+1 × nl+1 identity matrix, and A
(
Kl
)

is the covariance of the pre-
activations zli and is derived in Xiao et al. [46] as follows: [A (K)]α,α′ (x, x

′) ≡ σ2
b +

σ2
ω/ (2k + 1)

∑
β [K]α+β,α′+β (x, x′) . It follows from Equation 3 that the summands in Equation 2

are i.i.d. conditioned on Kl−1. Subject to weak restrictions on the nonlinearity φ, we can apply the
weak law of large numbers and conclude that

∀Kl−1
(
Kl|Kl−1

) P−−−−→
nl→∞

(C ◦ A)
(
Kl−1

)
in probability, where, (4)

[C (K)]α,α′ (x, x
′) ≡ Ez∼N (0,K) [φ (zα(x))φ (zα′(x

′))] . (5)

For nonlinearities such as ReLU [28] and the error function (erf) C can be computed in closed form
as derived in Cho & Saul [10] and Williams [41] respectively.

A less obvious result is that, under slightly stronger assumptions on φ, the top-layer activation
covariance KL becomes unconditionally deterministic as channels in all hidden layers grow to
infinity simultaneously (Theorem A.4). This lets us treat zL as a sequence of Gaussians with a
random covariance matrix converging to a constant, which allows for the following result proven in
§A.8.4.

Result. If φ : R→ R has an exponentially-bounded derivative, i.e. ∃ a, b ∈ R : ∀x ∈ R |φ′ (x)| ≤
a exp (bx) a.e. (almost everywhere), then the following convergence in distribution holds:(

zL|y0
) D−−−−−−−−−−−−→

min{n1,...,nL}→∞
N
(
0,A

(
KL
∞
)
⊗ InL+1

)
, where KL

∞ ≡ (C ◦ A)
L (
K0
)
. (6)

2.3 Class predictions. We have shown in Equation 6 that in the infinite channel limit a deep CNN
is a GP indexed by input samples and spatial locations of the top layer. We now remark that
transformations to obtain class predictions that are common in CNN classifiers can be represented as
either vectorization or projection, preserving the GP equivalence. We compare the presented below
strategies in Figure 1.

2.3.1 Vectorization. A common readout strategy is to vectorize (flatten) the output of the
last convolutional layer into a vector and stack a fully connected layer on top: zL+1

i (x) =∑nL+1d
j=1 ωL+1

ij φ
(
vec
[
zL (x)

])
j

+ bL+1
i . One can easily verify that in the infinite channel limit

this architecture results in the following per-class covariance: Kvec
∞ ≡ σ2

ω/d
∑
α

[
KL+1
∞

]
α,α

+ σ2
b .

As observed in Xiao et al. [46], to compute diagonal terms of
[
Kl+1
∞
]

(x, x′) one needs only the
corresponding diagonal terms of

[
Kl
∞
]

(x, x′). Consequently the memory cost is only O
(
|X |2d

)
.

Note that this approach ignores pixel-pixel covariances and produces a GP corresponding to a
locally-connected network (see §3).

2.3.2 Projection. Another approach is a projection collapsing spatial dimensions. Let h ∈ Rd, and
define the output to be zL+1

i (x) =
∑nL+1

j=1 ωL+1
ij

(
φ
(
zL (x)

)
h
)
j

+ bL+1
i . This leads to the output

per-class covariance Kh∞ ≡ σ2
ω

∑
α,α′ hαhα′

[
KL+1
∞

]
α,α′

+ σ2
b . Examples of this approach include

2.3.2.1 Global average pooling: take h = 1
d1d. Then Kpool

∞ ≡ σ2
ω/d

2
∑
α,α′

[
KL+1
∞

]
α,α′

+ σ2
b .

This corresponds to applying global average pooling right after the last convolutional layer.
It takes all pixel-pixel covariances into consideration and makes the kernel translation
invariant. However, it requires O

(
|X |2d2

)
memory. It is impractical to use this method to

analytically evaluate the GP, and we evaluate it using Monte Carlo sampling (see §A.5).
2.3.2.2 Subsampling one particular pixel: take h = eα, leading to Keα∞ ≡ σ2

ω

[
KL+1
∞

]
α,α

+ σ2
b .

This approach makes use of only one pixel-pixel covariance, and requires the same amount
of memory as Kvec

∞ to compute.

2

1 2 5 10 2 5 100

0.2

0.3

0.4

0.5

CNN-GP with pooling (MC)

CNN-GP

CNN-GP (center pixel)

CNN-GP (without padding)

FCN-GP

Depth

A
cc

ur
ac

y

Figure 1: Different dimensionality collapsing strategies de-
scribed in §2.3. Validation accuracy of a CNN-GP with pool-
ing (§2.3.2.1, Monte Carlo estimate, see §A.5) is better than
other models due to translation invariance. CNN-GP with
zero padding (§2.3.1) outperforms an analogous CNN-GP
without padding as depth increases. At depth 15 output with-
out padding is reduced spatially to 1 × 1, making the CNN-
GP without padding equivalent to the center pixel selection
strategy (§2.3.2.2), also performing worse than the CNN-GP
(we conjecture, due to overfitting to centrally-located features)
but approaches the latter in the limit of large depth, as in-
formation becomes more uniformly spatially distributed [46].
CNN-GPs generally outperform FCN-GP (right) due to the
local connectivity prior, but can fail to capture nonlinear in-
teractions between spatially-distant pixels at shallow depths
(left). Values are reported on a 2K/4K train/validation subsets
of CIFAR10. See §A.10.3 for experimental details.

3 Discussion

3.1 Bayesian CNNs with many channels are identical to locally connected networks, in the
absence of pooling. Locally Connected Networks (LCNs) [13, 23] are CNNs without weight sharing
between spatial locations. LCNs preserve the connectivity pattern, and thus topology, of a CNN.
However, they do not possess the equivariance property of a CNN – if an input is translated, the
latent representation in an LCN will be completely different, rather than also being translated. The
CNN-GP predictions without spatial pooling in §2.3.1 and §2.3.2.2 depend only on sample-sample
covariances, and do not depend on pixel-pixel covariances. LCNs destroy pixel-pixel covariances:[
KL
∞
]LCN
α,α′

(x, x′) = 0, for α 6= α′. However, LCNs preserve the covariances between input examples

at every pixel:
[
KL
∞
]LCN
α,α

(x, x′) =
[
KL
∞
]CNN
α,α

(x, x′). As a result, in the absence of pooling, LCN-
GPs and CNN-GPs are identical. Moreover, LCN-GPs with pooling are identical to CNN-GPs
with vectorization of the top layer (under suitable scaling of xL+1). We confirm these findings
experimentally in Figures 2 (b), 3, 4, and Table 1.

3.2 Pooling leverages equivariance to provide invariance. The only kernel leveraging pixel-pixel
covariances is that of the CNN-GP with pooling. This enables the predictions of this GP and the
corresponding CNN to be invariant to translations (modulo edge effects) – a beneficial quality for
an image classifier (a well known in literature observation [7]). We observe strong experimental
evidence supporting the benefits of invariance throughout this work (Figures 1, 2 (b), 3; Tables 1, 2),
in both CNNs and CNN-GPs.

3.3 Finite-channel SGD-trained CNNs can outperform infinite-channel Bayesian CNNs, in the
absence of pooling. In the absence of pooling, the benefits of equivariance and weight sharing are
more challenging to explain in terms of Bayesian priors on class predictions. Indeed, in this work we
find that the performance of finite-width SGD-trained CNNs often approaches that of their CNN-GP
counterpart (Figure 2, b, c)3, suggesting that in those cases equivariance does not play a beneficial
role in SGD-trained networks. However, as can be seen in Tables 1, 2, and Figure 2 (c), the best
CNN overall outperforms the best CNN-GP by a significant margin – an observation specific to
CNNs and not FCNs or LCNs. We observe this gap in performance especially in the case of ReLU
networks trained with a large learning rate. In Table 1 we demonstrate this large gap in performance
by evaluating different models with equivalent architecure and hyperparameter settings, chosen for
good SGD-trained CNN performance.

We conjecture that equivariance, a property lacking in LCNs and the Bayesian treatment of the infinite
channel CNN limit, improves the performance of SGD-trained finite-channel CNNs with the correct
settings of hyperparameters. We hope our work stimulates future research into disentangling the
contributions of the two qualities (Bayesian treatment and infinite width) to the performance gap
observed.

3This observation is conditioned on the respective NN fitting the training set to 100%. Underfitting breaks
the correspondance to an NN-GP, since train set predictions of such a network no longer correspond to the true
training labels. Properly tuned underfitting often also leads to better generalization (Table 2).

3

(a) (b) (c)

6789
100

2 3 4 5 6789
1000

0.65

0.7

0.75
0.8

0.85

CNN w/ pooling

#Channels

A
cc

ur
ac

y

No Pooling Global Average Pooling

L
C

N

5 10 2 5 100 2 510002 50.15
0.2

0.25
0.3

0.35

GP
NN

5 10 2 5 100 2 510002 50.15
0.2

0.25
0.3

0.35

A
cc

ur
ac

y

GP
NN

C
N

N

5 10 2 5 100 2 510002 50.15
0.2

0.25
0.3

0.35

GP
NN

5 10 2 5 100 2 510002 50.15
0.2

0.25
0.3

0.35

A
cc

ur
ac

y

GP
NN

#Channels

0.4 0.6 0.8

0.4

0.6

0.8
Accuracy

Best CNN w/o pooling

C
N

N
-G

P

Figure 2: (a): SGD-trained CNNs often perform better with increasing number of channels. Each line
corresponds to a particular choice of architecture and initialization hyperparameters, with best learning rate
and weight decay selected independently for each number of channels (x-axis). (b): SGD-trained CNNs
often approach the performance of their corresponding CNN-GP with increasing number of channels.
All models have the same architecture except for pooling and weight sharing, as well as training-related
hyperparameters such as learning rate, weight decay and batch size, which are selected for each number of
channels (x-axis) to maximize validation performance (y-axis) of a neural network. As the number of channels
grows, best validation accuracy increases and approaches accuracy of the respective GP (solid horizontal line).
(c): However, the best-performing SGD-trained CNNs can outperform their corresponding CNN-GPs.
Each point corresponds to the validation accuracy of: (y-axis) a specific CNN-GP; (x-axis) the best CNN
with the same architectural hyper-parameters selected among the 100%-accurate models on the full training
CIFAR10 dataset with different learning rates, weight decay and number of channels. While CNN-GP appears
competitive against 100%-accurate CNNs (above the diagonal), the best CNNs overall outperform CNN-GPs
by a significant margin (below the diagonal, right). Experimental details: all networks have reached 100%
training accuracy on CIFAR10. Values in (b) are reported on an 0.5K/4K train/validation subset downsampled to
8× 8 for computational reasons. See §A.10.5 and §A.10.1 for full experimental details of (a, c) and (b) plots
respectively.

Quality: Compositionality Local connectivity Equivariance Invariance

Model: FCN FCN-GP LCN (w/ pooling) CNN-GP CNN CNN w/ pooling
Error: 46.26 41.45 36.52 (36.23) 36.71 19.93 16.54

Table 1: Disentangling the role of network topology, equivariance, and invariance on test performance,
for SGD-trained and infinite width Bayesian networks. Test error (%) on CIFAR10 of different models of the
same depth, nonlinearity, and weight and bias variances. LCN and CNN-GP have a hierarchical local topology,
beneficial for image recognition tasks and outperform fully connected models (FCN and FCN-GP). As predicted
in §3.1: (i) weight sharing has no effect in the Bayesian treatment of an infinite width CNN (CNN-GP performs
similarly to an LCN, a CNN without weight sharing) , and (ii) pooling has no effect on generalization of an LCN
model (LCN and LCN with pooling perform nearly identically) . Local connectivity combined with equivariance
(CNN) is enabled by weight sharing in an SGD-trained finite model, allowing for a significant improvement.
Finally, invariance enabled by weight sharing and pooling (CNN w/ pooling) allows for the best performance.
Values are reported for 8-layer ReLU models. See §A.10.6 for experimental details and Table 2 for more model
comparisons.

Acknowledgments

We thank Sam Schoenholz, Vinay Rao, Daniel Freeman, and Qiang Zeng for frequent discussion and
feedback on preliminary results. We thank AnonReviewer3 for an insightful and detailed openreview
of the respective ICLR2019 submission.

References
[1] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S

Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, et al. Tensorflow: Large-scale machine learning on
heterogeneous distributed systems. arXiv preprint arXiv:1603.04467, 2016.

[2] Anonymous. Deep convolutional gaussian process. In Submitted to International Conference on Learn-
ing Representations, 2019. URL https://openreview.net/forum?id=HyeUPi09Y7. under
review.

[3] Patrick Billingsley. Convergence of probability measures. John Wiley & Sons, 1999.

4

https://openreview.net/forum?id=HyeUPi09Y7

[4] Kenneth Blomqvist, Samuel Kaski, and Markus Heinonen. Deep convolutional gaussian processes. arXiv
preprint arXiv:1810.03052, 2018.

[5] Anastasia Borovykh. A gaussian process perspective on convolutional neural networks. arXiv preprint
arXiv:1810.10798, 2018.

[6] John Bradshaw, Alexander G de G Matthews, and Zoubin Ghahramani. Adversarial examples, uncertainty,
and transfer testing robustness in gaussian process hybrid deep networks. arXiv preprint arXiv:1707.02476,
2017.

[7] Joan Bruna and Stéphane Mallat. Invariant scattering convolution networks. IEEE transactions on pattern
analysis and machine intelligence, 35(8):1872–1886, 2013.

[8] Alfredo Canziani, Adam Paszke, and Eugenio Culurciello. An analysis of deep neural network models for
practical applications. arXiv preprint arXiv:1605.07678, 2016.

[9] Minmin Chen, Jeffrey Pennington, and Samuel Schoenholz. Dynamical isometry and a mean field
theory of RNNs: Gating enables signal propagation in recurrent neural networks. In Proceedings of the
35th International Conference on Machine Learning, volume 80 of Proceedings of Machine Learning
Research, pp. 873–882, Stockholmsmässan, Stockholm Sweden, 10–15 Jul 2018. PMLR. URL http:
//proceedings.mlr.press/v80/chen18i.html.

[10] Youngmin Cho and Lawrence K Saul. Kernel methods for deep learning. In Advances in neural information
processing systems, pp. 342–350, 2009.

[11] Andreas Damianou and Neil Lawrence. Deep gaussian processes. In Artificial Intelligence and Statistics,
pp. 207–215, 2013.

[12] Amit Daniely, Roy Frostig, and Yoram Singer. Toward deeper understanding of neural networks: The
power of initialization and a dual view on expressivity. In Advances In Neural Information Processing
Systems, pp. 2253–2261, 2016.

[13] Kunihiko Fukushima. Cognitron: A self-organizing multilayered neural network. Biological cybernetics,
20(3-4):121–136, 1975.

[14] Adrià Garriga-Alonso, Laurence Aitchison, and Carl Edward Rasmussen. Deep convolutional networks
as shallow Gaussian processes. arXiv preprint arXiv:1808.05587, aug 2018. URL https://arxiv.
org/abs/1808.05587.

[15] Daniel Golovin, Benjamin Solnik, Subhodeep Moitra, Greg Kochanski, John Karro, and D Sculley. Google
vizier: A service for black-box optimization. In Proceedings of the 23rd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pp. 1487–1495. ACM, 2017.

[16] Boris Hanin and David Rolnick. How to start training: The effect of initialization and architecture. arXiv
preprint arXiv:1803.01719, 2018.

[17] Tamir Hazan and Tommi Jaakkola. Steps toward deep kernel methods from infinite neural networks. arXiv
preprint arXiv:1508.05133, 2015.

[18] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. 3rd International
Conference for Learning Representations, 2015.

[19] Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical report, Citeseer, 2009.

[20] Vinayak Kumar, Vaibhav Singh, PK Srijith, and Andreas Damianou. Deep gaussian processes with
convolutional kernels. arXiv preprint arXiv:1806.01655, 2018.

[21] Neil D Lawrence and Andrew J Moore. Hierarchical gaussian process latent variable models. In Proceed-
ings of the 24th international conference on Machine learning, pp. 481–488. ACM, 2007.

[22] Nicolas Le Roux and Yoshua Bengio. Continuous neural networks. In Artificial Intelligence and Statistics,
pp. 404–411, 2007.

[23] Yann Lecun. Generalization and network design strategies. In Connectionism in perspective. Elsevier,
1989.

[24] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

5

http://proceedings.mlr.press/v80/chen18i.html
http://proceedings.mlr.press/v80/chen18i.html
https://arxiv.org/abs/1808.05587
https://arxiv.org/abs/1808.05587

[25] Jaehoon Lee, Yasaman Bahri, Roman Novak, Sam Schoenholz, Jeffrey Pennington, and Jascha Sohl-
dickstein. Deep neural networks as gaussian processes. In International Conference on Learning Repre-
sentations, 2018. URL https://openreview.net/forum?id=B1EA-M-0Z.

[26] Alexander G de G Matthews, Mark Rowland, Jiri Hron, Richard E Turner, and Zoubin Ghahramani.
Gaussian process behaviour in wide deep neural networks. arXiv preprint arXiv:1804.11271, 9 2018.

[27] Alexander G. de G. Matthews, Jiri Hron, Mark Rowland, Richard E. Turner, and Zoubin Ghahramani.
Gaussian process behaviour in wide deep neural networks. In International Conference on Learning
Representations, 4 2018. URL https://openreview.net/forum?id=H1-nGgWC-.

[28] Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted boltzmann machines. In
Proceedings of the 27th international conference on machine learning (ICML-10), pp. 807–814, 2010.

[29] Radford M. Neal. Priors for infinite networks (tech. rep. no. crg-tr-94-1). University of Toronto, 1994.

[30] Behnam Neyshabur, Ryota Tomioka, and Nathan Srebro. In search of the real inductive bias: On the
role of implicit regularization in deep learning. Proceeding of the international Conference on Learning
Representations workshop track, abs/1412.6614, 2015.

[31] Roman Novak, Yasaman Bahri, Daniel A. Abolafia, Jeffrey Pennington, and Jascha Sohl-Dickstein.
Sensitivity and generalization in neural networks: an empirical study. In International Conference on
Learning Representations, 2018. URL https://openreview.net/forum?id=HJC2SzZCW.

[32] Roman Novak, Lechao Xiao, Jaehoon Lee, Yasaman Bahri, Daniel A Abolafia, Jeffrey Pennington, and
Jascha Sohl-Dickstein. Bayesian deep convolutional networks with many channels are gaussian processes.
arXiv preprint arXiv:1810.05148, 2018.

[33] Ben Poole, Subhaneil Lahiri, Maithra Raghu, Jascha Sohl-Dickstein, and Surya Ganguli. Exponential
expressivity in deep neural networks through transient chaos. In Advances In Neural Information Processing
Systems, pp. 3360–3368, 2016.

[34] Joaquin Quiñonero-Candela and Carl Edward Rasmussen. A unifying view of sparse approximate gaussian
process regression. Journal of Machine Learning Research, 6(Dec):1939–1959, 2005.

[35] Ali Rahimi and Ben Recht. Random features for large-scale kernel machines. In In Neural Infomration
Processing Systems, 2007.

[36] Carl Edward Rasmussen and Christopher KI Williams. Gaussian processes for machine learning, volume 1.
MIT press Cambridge, 2006.

[37] Samuel S Schoenholz, Justin Gilmer, Surya Ganguli, and Jascha Sohl-Dickstein. Deep information
propagation. ICLR, 2017.

[38] Michalis Titsias. Variational learning of inducing variables in sparse gaussian processes. In Artificial
Intelligence and Statistics, pp. 567–574, 2009.

[39] Mark van der Wilk, Carl Edward Rasmussen, and James Hensman. Convolutional gaussian processes. In
Advances in Neural Information Processing Systems 30, pp. 2849–2858, 2017.

[40] Roman Vershynin. Introduction to the non-asymptotic analysis of random matrices. arXiv preprint
arXiv:1011.3027, 2010.

[41] Christopher KI Williams. Computing with infinite networks. In Advances in neural information processing
systems, pp. 295–301, 1997.

[42] Andrew G Wilson, Zhiting Hu, Ruslan R Salakhutdinov, and Eric P Xing. Stochastic variational deep
kernel learning. In Advances in Neural Information Processing Systems, pp. 2586–2594, 2016.

[43] Andrew Gordon Wilson, Zhiting Hu, Ruslan Salakhutdinov, and Eric P Xing. Deep kernel learning. In
Artificial Intelligence and Statistics, pp. 370–378, 2016.

[44] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmarking
machine learning algorithms, 2017.

[45] Lechao Xiao, Yasaman Bahri, Sam Schoenholz, and Jeffrey Pennington. Training ultra-deep cnns with
critical initialization. In NIPS Workshop, 2017.

6

https://openreview.net/forum?id=B1EA-M-0Z
https://openreview.net/forum?id=H1-nGgWC-
https://openreview.net/forum?id=HJC2SzZCW

[46] Lechao Xiao, Yasaman Bahri, Jascha Sohl-Dickstein, Samuel Schoenholz, and Jeffrey Pennington. Dy-
namical isometry and a mean field theory of CNNs: How to train 10,000-layer vanilla convolutional
neural networks. In Proceedings of the 35th International Conference on Machine Learning, volume 80
of Proceedings of Machine Learning Research, pp. 5393–5402, Stockholmsmässan, Stockholm Sweden,
10–15 Jul 2018. PMLR. URL http://proceedings.mlr.press/v80/xiao18a.html.

[47] Ge Yang and Samuel Schoenholz. Mean field residual networks: On the edge of chaos. In Advances in
neural information processing systems, pp. 7103–7114, 2017.

A Appendix

A.1 Further model comparison

Model CIFAR10 MNIST Fashion-MNIST
CNN with pooling 14.85 (15.65) − −
CNN with ReLU and large learning rate 24.76 (17.64) − −
CNN-GP 32.86 0.88 7.40
CNN with small learning rate 33.31(22.89) − −
CNN with erf (any learning rate) 33.31(22.17) − −
Convolutional GP [39] 35.40 1.17 −
ResNet GP [14] − 0.84 −
Residual CNN-GP [14] − 0.96 −
CNN-GP [14] − 1.03 −
FCN-GP 41.06 1.22 8.22
FCN-GP [25] 44.34 1.21 −
FCN 45.52 (44.73) − −

Table 2: Aspects of architecture and inference influencing test performance. Test error (%) for best model
within each model family, maximizing validation accuracy over depth, width, and training and initialization
hyperpameters. Except where indicated by parentheses, all models achieve 100% training accuracy. For
SGD-trained CNNs, numbers in parentheses correspond to the same model family, but without restriction on
training accuracy. CNN-GP achieves state of the art results on CIFAR10 for GPs without trainable kernels and
outperforms SGD models optimized with a small learning rate to 100% train accuracy. When SGD optimization
is allowed to underfit the training set, there is a significant improvement in generalization. Further, when ReLU
nonlinearities are paired with large learning rates, the performance of SGD-trained models again improves
relative to CNN-GPs, suggesting a beneficial interplay between ReLUs and fast SGD training. These differences
in performance between CNNs and CNN-GPs are not observed between FCNs and FCN-GPs, or between LCNs
and LCN-GPs (Table 1), suggesting that equivariance is the underlying factor responsible for the improved
performance of finite SGD-trained CNNs relative to infinite Bayesian CNNs without pooling. See §A.10.5 for
experimental details.

A.2 Related work and summary of contributions

In early work on neural network priors, Neal [29] demonstrated that, in a fully connected network
with a single hidden layer, certain natural priors over network parameters give rise to a Gaussian
process prior over functions when the number of hidden units is taken to be infinite. Follow-up work
extended the conditions under which this correspondence applied [41, 22, 17]. An exactly analogous
correspondence for infinite width, finite depth deep fully connected networks was developed recently
in Lee et al. [25], Matthews et al. [27], with Matthews et al. [26] extending the convergence guarantees
to a more general class of nonlinearities and width growth rates.

The line of work examining signal propagation in random deep networks [33, 37, 47, 16, 9] is related
to the construction of the GPs we consider. They apply a mean field approximation in which the
pre-activation signal is replaced with a Gaussian, and the derivation of the covariance function with
depth is the same as for the kernel function of a corresponding GP. Recently, Xiao et al. [45, 46]
extended this to convolutional architectures without pooling. Xiao et al. [46] also analyzed properties
of the convolutional kernel at large depths to construct a phase diagram which will be relevant to
NN-GP performance, as discussed in §A.4.

7

http://proceedings.mlr.press/v80/xiao18a.html

Compositional kernels coming from wide convolutional and fully connected layers also appeared
outside of the GP context. Cho & Saul [10] derived closed-form compositional kernels for rectified
polynomial activations (including ReLU). Daniely et al. [12] proved approximation guarantees
between a network and its corresponding kernel, and show that empirical kernels will converge as the
number of channels increases.

There is a line of work considering stacking of GPs, such as deep GPs [21, 11]. These no longer
correspond to GPs, though they can describe a rich class of probabilistic models beyond GPs.
Alternatively, deep kernel learning [43, 42, 6] utilizes GPs with base kernels which take in features
produced by a deep neural network (often a CNN), and train the resulting model end-to-end. Finally,
van der Wilk et al. [39] incorporates convolutional structure into GP kernels, with follow-up work
stacking multiple such GPs [20, 4, 2] to produce a deep convolutional GP (which is no longer a GP).
Our work differs from all of these in that our GP corresponds exactly to a fully Bayesian CNN in the
infinite channel limit, when all layers are taken to be of infinite size. We remark that while alternative
models, such as deep GPs, do include infinite-sized layers in their construction, they do not treat all
layers in this way – for instance, through insertion of bottleneck layers which are kept finite. While it
remains to be seen exactly which limit is applicable for understanding realistic CNN architectures in
practice, the limit we consider is natural for a large class of CNNs, namely those for which all layers
sizes are large and rather comparable in size. The deep GP approach, on the other hand, has better
modelling capabilities at the expense of higher inference cost.

Borovykh [5] analyzes the convergence of CNN outputs at different spatial locations (or different
timepoints for a temporal CNN) to a GP for a single input example. Thus, while they also consider a
GP limit (and perform an experiment comparing posterior GP predictions to an SGD-trained CNN),
they do not address the dependence of network outputs on multiple input examples, and thus their
model is unable to generate predictions on a test set consisting of new input examples.

In concurrent work, Garriga-Alonso et al. [14] derive an NN-GP kernel equivalent to one of the
kernels considered in our work. In addition to explicitly specifying kernels corresponding to pooling
and vectorizing, we also compare the NN-GP performance to finite width SGD-trained CNNs and
analyze the differences between the two models.

The specific novel contributions of the present work are:

1. We show analytically that CNNs with many channels, trained in a fully Bayesian fashion,
correspond to an NN-GP (§2). We show this for CNNs both with and without pooling,
with arbitrary convolutional striding, and with both same and valid padding. We prove
convergence as the number of channels in hidden layers approach infinity simultaneously
(i.e. min

{
n1, . . . , nL

}
→ ∞, see §A.8.4 for details), strengthening and extending the

result of [26] under mild conditions on the nonlinearity derivative.
2. We show that in the absence of pooling, the NN-GP for a CNN and a Locally Connected

Network (LCN) are identical (§3.1). An LCN has the same local connectivity pattern as a
CNN, but without weight sharing or translation equivariance.

3. We experimentally compare trained CNNs and LCNs and find that under certain conditions
both perform similarly to the respective NN-GP (Figure 2, b, c). Moreover, both architec-
tures tend to perform better with increased channel count, suggesting that similarly to FCNs
[30, 31] CNNs benefit from overparameterization (Figure 2, a, b), corroborating a similar
trend observed in Canziani et al. [8, Figure 2]. However, we also show that careful tuning of
hyperparameters allows finite CNNs trained with SGD to outperform their corresponding
NN-GP by a significant margin. We experimentally disentangle and quantify the contri-
butions stemming from local connectivity, equivariance, and invariance in a convolutional
model in one such setting (Table 1).

4. We introduce a Monte Carlo method to compute NN-GP kernels for situations (such as
CNNs with pooling) where evaluating the NN-GP is otherwise computationally infeasible
(§A.5).

8

Depth: 1 10 100 1000 Phase boundary

C
N

N
-G

P

0.1 5
0

2

0.1

0.38

A
cc

ur
ac

y

Weight variance

Bi
as

 v
ar

ia
nc

e

FC
N

-G
P

Table 3: Validation accuracy of CNN- and FCN- GPs as a function of weight (σ2
ω , horizontal axis) and bias

(σ2
b , vertical axis) variances. As predicted in §A.4, the regions of good performance concentrate around the

critical line (phase boundary, right) as the depth increases (left to right). All plots share common axes ranges and
employ the erf nonlinearity. See §A.10.2 for experimental details.

A.3 Review of exact Bayesian regression with GPs

Our discussion in the paper has focused on model priors. A crucial benefit we derive by mapping to a
GP is that Bayesian inference is straightforward to implement and can be done exactly for regression
[36, chapter 2], requiring only simple linear algebra. Let X denote training inputs x1, ..., x|X |,
tT = (t1, ..., t|X |) training targets, and collectively D for the training set. The integral over the
posterior can be evaluated analytically to give a posterior predictive distribution on a test point y∗
which is Normal, (z∗|D, y∗) ∼ N

(
µ∗, σ

2
∗
)
, with

µ∗ = K(x∗,X)(K(X ,X) + σ2
εI|X |)−1t, (7)

σ2
∗ = K(x∗, x∗)−K(x∗,X)(K(X ,X) + σ2

εI|X |)−1K(X , x∗). (8)

We use the shorthandK(X ,X) to denote the |X |×|X |matrix formed by evaluating the GP covariance
on the training inputs, and likewise K(x∗,X) is a |X |-length vector formed from the covariance
between the test input and training inputs. Computationally, the costly step in GP posterior predictions
comes from the matrix inversion, which in all experiments were carried out exactly, and typically
scales as O(|X |3) (though algorithms scaling as O(|X |2.4) exist for sufficiently large matrices).
Nonetheless, there is a broad literature on approximate Bayesian inference with GPs which can be
utilized for efficient implementation [36, chapter 8]; [34, 38].

A.4 Relationship to Deep Signal Propagation

The recurrence relation linking the GP kernel at layer l + 1 to that of layer l following from Equation
6 (i.e. Kl+1

∞ = (C ◦ A)
(
Kl
∞
)
) is precisely the covariance map examined in a series of related papers

on signal propagation [46, 33, 37, 25] (modulo notational differences; denoted as F , C or e.g. A ? C
in Xiao et al. [46]). In those works, the action of this map on hidden-state covariance matrices was
interpreted as defining a dynamical system whose large-depth behavior informs aspects of trainability.
In particular, as l → ∞, Kl+1

∞ = (C ◦ A)
(
Kl
∞
)
≈ Kl

∞ ≡ K∗∞, i.e. the covariance approaches a
fixed point K∗∞. The convergence to a fixed point is problematic for learning because the hidden
states no longer contain information that can distinguish different pairs of inputs. It is similarly
problematic for GPs, as the kernel becomes pathological as it approaches a fixed point. Precisely, in
the chaotic regime outputs of the GP become asymptotically decorrelated and therefore independent,
while in the ordered regime they approach perfect correlation of 1. Either of these scenarios captures
no information about the training data in the kernel and makes learning infeasible.

This problem can be ameliorated by judicious hyperparameter selection, which can reduce the rate of
exponential convergence to the fixed point. For hyperpameters chosen on a critical line separating
two untrainable phases, the convergence rates slow to polynomial, and very deep networks can be
trained, and inference with deep NN-GP kernels can be performed – see Table 3.

9

M
C

-C
N

N
-G

P

0 10
0

10

0.1

0.42

A
cc

ur
ac

y

log2(#Samples)

lo
g2

(#
C

ha
nn

el
s)

0 10
0

10

−6.5

0.5

lo
g1

0(
D

ist
an

ce
)

log2(#Samples)

lo
g2

(#
C

ha
nn

el
s)

Figure 3: Validation accuracy (left) of an MC-CNN-GP increases with n ×M (i.e. channel count times
number of samples) and approaches that of the exact CNN-GP (not shown), while the distance (right) to the
exact kernel decreases. The dark band in the left plot corresponds to ill-conditioning of KL+1

n,M when the number
of outer products contributing to KL+1

n,M approximately equals its rank. Values reported are for a 3-layer model
applied to a 2K/4K train/validation subset of CIFAR10 downsampled to 8× 8. See Figure 4 for similar results
with other architectures and §A.10.2 for experimental details.

A.5 Monte Carlo evaluation of intractable GP kernels

We introduce a Monte Carlo estimation method for NN-GP kernels which are computationally
impractical to compute analytically, or for which we do not know the analytic form. Similar in spirit
to traditional random feature methods [35], the core idea is to instantiate many random finite width
networks and use the empirical uncentered covariances of activations to estimate the Monte Carlo-GP
(MC-GP) kernel,

[
Kl
n,M

]
α,α′

(x, x′) ≡ 1

Mn

M∑
m=1

n∑
c=1

xlcα (x; θm)xlcα′ (x
′; θm) (9)

where θ consists of M draws of the weights and biases from their prior distribution, θm ∼ p (θ), and
n is the width or number of channels in hidden layers. The MC-GP kernel converges to the analytic
kernel with increasing width, limn→∞Kl

n,M = Kl
∞ in probability.

For finite width networks, the uncertainty in Kl
n,M is Var[Kl

n,M] = Varθ
[
Kl
n (θ)

]
/M . From

Daniely et al. [12], we know that Varθ
[
Kl
n (θ)

]
∝ 1

n , which leads to Varθ[K
l
n,M] ∝ 1

Mn . For finite
n, Kl

n,M is also a biased estimate of Kl
∞, where the bias depends solely on network width. We

do not currently have an analytic form for this bias, but we can see in Figures 3 and 4 that for the
hyperparameters we probe it is small relative to the variance. In particular,

∥∥Kl
n,M (θ)−KL

∞
∥∥2

F
is

nearly constant for constant Mn. We thus treat Mn as the effective sample size for the Monte Carlo
kernel estimate. Increasing M and reducing n can reduce memory cost, though potentially at the
expense of increased compute time and bias.

In a non-distributed setting, the MC-GP reduces the memory requirements to compute GPpool from
O
(
|X |2 d2

)
to O

(
|X |2 + n2 + nd

)
, making the evaluation of CNN-GPs with pooling practical.

10

M
C

-C
N

N
-G

P
w

ith
po

ol
in

g

0 10
0

10

0.1

0.42

A
cc

ur
ac

y

log2(#Samples)

lo
g2

(#
C

ha
nn

el
s)

0 10
0

10

−6.5

0.5

lo
g1

0(
D

ist
an

ce
)

log2(#Samples)

lo
g2

(#
C

ha
nn

el
s)

M
C

-L
C

N
-G

P

0 10
0

10

0.1

0.42

A
cc

ur
ac

y

log2(#Samples)

lo
g2

(#
C

ha
nn

el
s)

0 10
0

10

−6.5

0.5

lo
g1

0(
D

ist
an

ce
)

log2(#Samples)
lo

g2
(#

C
ha

nn
el

s)

M
C

-L
C

N
-G

P
w

ith
Po

ol
in

g

0 10
0

10

0.1

0.42

A
cc

ur
ac

y

log2(#Samples)

lo
g2

(#
C

ha
nn

el
s)

0 10
0

10

−6.5

0.5

lo
g1

0(
D

ist
an

ce
)

log2(#Samples)

lo
g2

(#
C

ha
nn

el
s)

M
C

-F
C

N
-G

P

0 10
0

10

0.1

0.42

A
cc

ur
ac

y

log2(#Samples)

lo
g2

(#
C

ha
nn

el
s)

0 10
0

10

−6.5

0.5
lo

g1
0(

D
ist

an
ce

)

log2(#Samples)

lo
g2

(#
C

ha
nn

el
s)

Figure 4: As in Figure 3, validation accuracy (left) of MC-GPs increases with n ×M (i.e. width times
number of samples), while the distance (right) to the the respective exact GP kernel (or the best available
estimate in the case of CNN-GP with pooling, top row) decreases. We remark that when using shared
weights, convergence is slower as smaller number of independent random parameters are being used. For
example a single-layer MC-LCN-GP kernel is expected to converge approximately Var[KCNN]/Var[KLCN] ∼√

LCN params/# CNN params =
√

spatial size of the output layer times faster than MC-CNN-GP, which
is in agreement with our results obtained in the second row and Figure 3. I.e. the geometric mean of the
ratios of the kernel distance from (3-layer) MC-CNN-GP and MC-LCN-GP to the respective CNN-GP is
≈ 2.2 >

√
spatial size of the output layer =

√
2× 2 = 2). See §A.10.2 for experimental details.

11

A.6 Strided convolutions, average pooling in intermediate layers, higher dimensions

Our analysis in the main text can easily be extended to cover average pooling and strided convolutions
(applied before the pointwise nonlinearity). Recall that conditioned on Kl the pre-activation zlj (x) ∈
Rd1 is a zero-mean multivariate Gaussian. Let B ∈ Rd2×d1 denote a linear operator. Then Bzlj (x) ∈
Rd2 is a zero-mean Gaussian, and the covariance is

E{ωl,bl}
[(
Bzlj (x)

) (
Bzlj (x′)

)T ∣∣∣Kl
]

= BE{ωl,bl}
[
zlj (x) zlj (x′)

T
∣∣∣Kl
]
BT . (10)

One can easily see that
{
Bzlj

∣∣Kl
}
j

are i.i.d. multivariate Gaussian as well.

Strided convolution. Strided convolution is equivalent to a non-strided convolution composed with
subsampling. Let s ∈ N denote size of the stride. Then the strided convolution is equivalent to
choosing B as follows: Bij = δ(is− j) for i ∈ {0, 1, . . . (d2 − 1)}.
Average pooling. Average pooling with stride s and window size ws is equivalent to choosing
Bij = 1/ws for i = 0, 1, . . . (d2 − 1) and j = is, . . . , (is+ ws− 1).

ND convolutions. Note that our analysis in the main text (1D) easily extends to higher-dimensional
convolutions by replacing integer pixel indices and sizes d, α, β with tuples (see also Figure 5). In
Equation 1 β values would have to span the hypercube [±k]

N
= {−k, . . . , k}N in the pre-activation

definition. Similarly, in §2.3 the normalizing factor d (d2) should be the product (squared) of its
entries, and summations over α, β should span the [d0]×· · ·× [dN] hypercube as well. The definition
of the kernel propagation operator A in §2.2 will remain exactly the same, so long as β is summed
over the hypercube, and the variance weights remain respectively normalized

∑
β vβ = 1.

A.7 Additional Figures

y0(x) = x

z0(x) y1(x)
z1(x) y2(x)

z̄2(x)
ϕ

n0 = 3 n1 = 12 n1 = 12 n2 = 12 n2 = 12
C = 10

k = (3,3) k = (3,3)d0
= (8,8

)

d1
= (6,6

)

d2
= (4,4

)

ϕ

Figure 5: A sample CNN classifier annotated according to notation in §2.1, §2.3.1. The network
transforms n0 × d0 = 3 × 8 × 8-dimensional inputs y0(x) = x ∈ X into C = 10-dimensional
logits z̄2(x). Model has two convolutional layers with k = (3, 3)-shaped filters, nonlinearity φ, and a
fully-connected layer at the top (y2 → z̄2(x), §2.3.1). Hidden (pre-)activations have n1 = n2 = 12
filters. As min

{
n1, n2

}
→∞, the prior of this CNN will approach that of a GP indexed by inputs

x and target class indices from 1 to C = 10. The covariance of such GP can be computed as[
σ2
ω

6×6

∑d2=(6,6)
α=(1,1)

[
(C ◦ A)

2 (
K0
)]
α,α

+ σ2
b

]
⊗ IC , where the sum is over the {1, . . . , 6}2 hypercube

(see §2.2, §2.3.1, §A.6). Presented is a CNN with stride 1 and no (“valid”) padding, i.e. the spatial
shape of the input shrinks as it propagates through it

(
d0 = (8, 8)→ d1 = (6, 6)→ d2 = (4, 4)

)
.

Note that for notational simplicity 1D CNN and circular padding with d0 = d1 = d2 = d is assumed
in the text, yet our formalism easily extends to the model displayed (§A.6). Further, while displayed
(pre-)activations have 3D shapes, in the text we treat them as 1D vectors (§A.9).

12

No Pooling Global Average Pooling

L
C

N

5 10 2 5 100 2 5 1000 2 5
0.08

0.09

0.1
0.11
0.12
0.13
0.14

GP
NN

5 10 2 5 100 2 5 1000 2 5
0.08

0.09

0.1
0.11
0.12
0.13
0.14

Va
lid

at
io

n
Lo

ss GP
NN

C
N

N

5 10 2 5 100 2 5 1000 2 5
0.08

0.09

0.1
0.11
0.12
0.13
0.14

GP
NN

5 10 2 5 100 2 5 1000 2 5
0.08

0.09

0.1
0.11
0.12
0.13
0.14

Va
lid

at
io

n
Lo

ss GP
NN

#Channels

Figure 6: Best validation loss (vertical axis) of trained neural networks (dashed line) as the number of
channels increases (horizontal axis) approaches that of a respective (Monte Carlo) CNN-GP (solid horizontal
line). See Figure 2 (b) for validation accuracy, Figure 7 for training loss and §A.10.1 for experimental details.

No Pooling Global Average Pooling

L
C

N

5 10 2 5 100 2 5 1000 2 51μ

10μ

100μ

0.001

0.01

0.1

5 10 2 5 100 2 5 1000 2 51μ

10μ

100μ

0.001

0.01

0.1

Tr
ai

ni
ng

 L
os

s

C
N

N

5 10 2 5 100 2 5 1000 2 51μ

10μ

100μ

0.001

0.01

0.1

5 10 2 5 100 2 5 1000 2 51μ

10μ

100μ

0.001

0.01

0.1

Tr
ai

ni
ng

 L
os

s

#Channels

Figure 7: Training loss (vertical axis) of best (in terms of validation loss) neural networks as the number of
channels increases (horizontal axis). While perfect 0 loss is not achieved (but 100% accuracy is), we observe no
consistent improvement when increasing the capacity of the network (left to right). This eliminates underfitting
as a possible explanation for why small models perform worse in Figure 2 (b). See Figure 6 for validation loss
and §A.10.1 for experimental details.

13

A.8 Equivalence between randomly initialized NNs and GPs

In this section, we present two different approaches, the sequential limit (§A.8.3) and simultaneous
limit (§A.8.4), to illustrate the relationship between many-channels Bayesian CNNs and GPs.

Sequential limit (§A.8.3) involves taking the infinite channel limit in hidden layers in a sequence,
starting from bottom (closest to inputs) layers and going upwards (to the outputs), i.e. n1 →
∞, . . . , nL →∞. Note that this approach in fact constructs a GP using a NN architecture to define
its covariance, and does not provide guarantees on actual convergence of large but finite Bayesian
CNNs to GPs, which is of most practical interest. However, it has the following benefits:

1. Weak assumptions on the NN activation function φ and on the distribution of the NN
parameters.

2. The arguments can be easily extended to more complicated network architectures, e.g.
architectures with max pooling, dropout, etc.

3. This approach provides a straightforward and intuitive way to compute the covariance of the
Gaussian process without diving into mathematical details.

Simultaneous limit (§A.8.4) considers growing the number of channels in hidden layers uniformly,
i.e. min

{
n1, . . . , nL

}
→ ∞. This approach establishes convergence of finite channel Bayesian

CNNs to GPs and is thus a more practically relevant result. However, it makes stronger assumptions,
and the proof is more involved.

We highlight that the GPs obtained by the two approaches are identical.

In both sections, we only provide the arguments for CNNs. It is straightforward (and in fact simpler)
to extend them to LCNs and FCNs. Indeed, an FCN is a particular case of a CNN where the
inputs and filters have singular spatial dimensions (d = 1, k = 0). For LCNs, the proof goes
through in an identical fashion if we replace A with ALCN defined as

[
ALCN (K)

]
α,α′

(x, x′) ≡
δα,α′ [A (K)]α,α′ (x, x

′).

A.8.1 Setup

Probability space. Let P be a collection of countably many mutually independent random variables
(R.V.s) defined on some probability space (Ω,F , P), where F is a σ-algebra defined on Ω and P is
a probability measure. Here P ≡ W ∪B ∪H is the collection of parameters used to define neural
networks:

1. Weights. W =
⋃
l∈N W l and W l =

{
ωlij,β : i, j ∈ N, β ∈ [±k]

}
, where [±k] ≡ [−k, k]∩

Z. We assume ωlij,β are i.i.d. R.V.s with mean zero and finite variance 0 < σ2
ω <∞. When

l = 0, we further assume they are Gaussian distributed.

2. Biases. B =
⋃
l∈N Bl and Bl =

{
blj : j ∈ N

}
. We assume blj are i.i.d. Gaussian with

mean zero and variance 0 ≤ σ2
b <∞.

3. Place-holder. H is a place-holder to store extra (if needed) R.V.s , e.g. parameters coming
from the final dense layer.

Inputs. We will consider a fixed X ⊆ Rn0×d to denote the inputs, with input channel count n0,
number of pixels d. Assume x 6= 0 for all x ∈ X and |X |, the cardinality of the inputs, is finite.

However, the simultaneous limit (§A.8.4) result can be extended to a countably-infinite input indexing
spaces X for certain topologies via an argument presented in Matthews et al. [27, section 2.2],
allowing to infer weak convergence on X from convergence on any finite subset (which is the case
we consider in this text; see also Billingsley [3, page 19] for details).

Notation, shapes, and indexing. We adopt the notation, shape, and indexing convention similar to
§2.1 and §A.9, which the reader is encouraged to review. We emphasize that whenever an index is
omitted, the variable is assumed to contain all possible entries along the respective dimension (e.g.
whole X if x is omitted, or all nl channels if the channel i is omitted).

14

A.8.2 Preliminary

We will use the following well-known theorem.
Theorem A.1. Let X, {Xn}n∈N be R.V.s in Rm. The following are equivalent:

1. Xn
D→ X (converges in distribution / converges weakly),

2. (Portmanteau Theorem) For all bounded continuous function f : Rm → R,

lim
n→∞

E [f(Xn)] = E [f(X)] , (11)

3. (Lévy’s Continuity Theorem) The characteristic functions of Xn, i.e. E
[
eit

TXn
]

converge
to that of X pointwisely, i.e. for all t ∈ Rm,

lim
n→∞

E
[
eit

TXn
]

= E
[
eit

TX
]
, (12)

where i denotes the imaginary unit.

Using the equivalence between (i) and (iii), it is straightforward to show that

Xn
D→ X ⇐⇒ aTXn

D→ aTX for all a ∈ Rm. (13)

In particular,

Xn
D→ N (0,Σ) ⇐⇒ aTXn

D→ N (0, aTΣa) for all a ∈ Rm. (14)

A.8.3 Sequential limit

In this section, we construct a Gaussian process using an infinite channel CNN with the limits taking
sequentially. We will show that pre-activation functions of different channels are i.i.d. Gaussian with
mean zero and covariance that can be computed recursively.

Let Ψ1 denote the following space of functions:
Uniformly square-integrable: for every R ≥ 1,

C2 (R,φ) ≡ sup
1/R≤r≤R

Ex∼N (0,r) |φ(x)|2 <∞. (15)

Let N∗ = N\{0}. We construct Gaussian processes recursively using an infinite width neural network
architecture with the following procedure:

1. If l > 0, assume {zl−1,∞
i }i∈N∗ are i.i.d. Gaussian with mean zero and variance Kl−1

∞ and
independent from future events (i.e. independent from the σ-alegbra generated by all R.V.s
with layer index greater than (l − 1)). For n ∈ N∗, let

yli,α(x) ≡


xi,α l = 0

φ
(
zl−1,∞
i,α (x)

)
l > 0

, (16)

zl,ni,α(x) ≡


1√
n0

∑
j∈[n0]

1√
2k+1

∑
β∈[±k] ω

l
ij,βy

l
j,α+β(x) + bli l = 0

1√
n

∑
j∈[n]

1√
2k+1

∑
β∈[±k] ω

l
ij,βy

l
j,α+β(x) + bli l > 0

, (17)

where

[n] ≡ {1, . . . , n} and [±k] ≡ {−k, . . . , 0, . . . k} . (18)

2. Prove that for any m ≥ 1,
[
zl,ni

]
i∈[m]

⊆ R|X |d converges in distribution to a multivariate

normal with mean zero and covariance A
(
Kl
∞
)
⊗ Im, where Kl

∞ is defined identically to
Equation 6.

15

3. Define random variable
[
zl,∞i

]
i∈[m]

in (Ω,F , P) with the same distribution as the limit

in (ii) so that they are also independent from any future events, i.e. independent from the
σ-algebra generated by all R.V.s with layer index greater than l.

In (iii), we implicitly assume the probability space (Ω,F , P) has enough capacity to fit in all R.V.s
generated by the above procedure, if not we will extend the sample space Ω using product measures.
In what follows, we use the central limit theorem to prove (ii).

Theorem A.2. If φ ∈ Ψ1, then for every l ≥ 0 and every m ≥ 1,
[
zl,ni

]
i∈[m]

⊆ R|X |d converges in

distribution to a multivariate normal with mean zero and covariance A
(
Kl
∞
)
⊗ Im.

Proof. We proceed by induction. This is obvious in the base case l = 0, since the weights and biases
are assumed to be independent Gaussian. Now we assume the theorem holds for l − 1. This implies
{yli}i∈N∗ =

{
φ(zl−1,∞

i)
}
i∈N∗

are i.i.d. random variables.

Choose a vector a ≡ [ai(x)]
T
i∈[m], x∈X ∈ Rm|X |. Then

∑
i∈[m]
x∈X

ai(x)zl,ni (x) =
∑
i∈[m]
x∈X

ai(x)

 1√
n

∑
j∈[n]

1√
2k + 1

∑
β∈[±k]

ωlij,βy
l
j,α+β(x) + bli

 (19)

=
1√
n

∑
j∈[n]

∑
i∈[m]
x∈X

ai(x)

∑
β∈[±k] ω

l
ij,βy

l
j,α+β(x)

√
2k + 1

+
∑
i∈[m]
x∈X

ai(x)bli (20)

≡ 1√
n

∑
j∈[n]

uj + v. (21)

It is not difficult to see that uj are i.i.d. and v is Gaussian. Then we can use the central limit theorem
to conclude that the above converges in distribution to a Gaussian, once we verify the second moment
of uj is finite. Using the fact that

{
ωlij,β

}
i,β

is a collection of independent R.V.s and integrating over

these R.V.s first, we get

Eu2
j =

1

2k + 1
E

 ∑
i∈[m] , x∈X

ai(x)
∑

β∈[±k]

ωlij,βy
l
j,α+β(x)

2

(22)

=
σ2
ω

2k + 1

∑
i∈[m]

∑
β∈[±k]

E

[∑
x∈X

ai(x)ylj,α+β(x)

]2

(23)

=
∑
i∈[m]

aTi Ā
(
Kl
∞
)
ai (24)

where by Ā we denote the linear transformation part of A from §2.2, i.e. A without the translation
term σ2

b : [
Ā (K)

]
α,α′

(x, x′) ≡ σ2
ω

2k + 1

∑
β

[K]α+β,α′+β (x, x′) . (25)

To prove finiteness of the second moment in Equation 24, it is sufficient to show that all the diagonal
terms of Kl

∞ are finite. This easily follows from the assumption φ ∈ Ψ1 and the definition of
Kl
∞ = (C ◦ A)

l (
K0
)
. Together with the distribution of v (whose covariance is straightforward

to compute), the joint distribution of
[
zl,ni

]
i∈[m]

converges weakly to a mean zero Gaussian with

covaraince matrix A
(
Kl
∞
)
⊗ Im by Theorem A.1 (Equation 14).

Remark A.1. The results of Theorem A.2 can be strengthened / extended in many directions.

16

1. Same analysis carries over (and the covariance matrix can be computed without much
extra effort) if we stack a channel-wise deterministic affine transform after the convolution
operator. Note that average pooling (not max pooling, which is not affine), global average
pooling and the convolutional striding are particular examples of such affine tranforms.
Moreover, valid padding (i.e. no padding) convolution can be regarded as subsampling (a
linear projection) operator composed with the regular circular padding.

2. Same analysis applies to max pooling, but computing the covariance may require non-
trivial effort. Let m denote the max pooling operator and assume it is applied right after
the activation function. The assumption

{
yli
}
i∈[n]

=
{
φ(zl−1,∞

i)
}
i∈[n]

are i.i.d. implies{
m
(
yli
)}
i∈[n]

are also i.i.d. Then we can proceed exactly as above except for verifying the

finiteness of second moment of m(yli) with the following trivial estimate:

Emax
{
yli,α
}2

α∈[s]
≤ E

∑
α∈[s]

∣∣yli,α∣∣2 (26)

where s is the window size of the max pooling.

In general, one can stack a channel-wise deterministic operator op on {yli} so long as the
second moment of {op(yli)} is finite. One can also stack a stochastic operator (e.g. dropout),
so long as the outputs are still channel-wisely i.i.d. and have finite second moments.

A.8.4 Simultaneous limit

In this section, we present a sufficient condition on the activation function φ so that the neural
networks converge to a Gaussian process as all the widths approach to infinity simultaneously.
Precisely, let t ∈ N and for each l ≥ 0, let nl : N→ N be the width function at layer l (by convention
n0(t) = n0). We are interested in the simultaneous limit nl = nl(t) → ∞ as t → ∞, i.e., for any
fixed L ≥ 1

min
{
n1(t), . . . , nL(t)

}
−−−→
t→∞

∞. (27)

Define a sequence of finite channel CNNs as follows:

yl,ti,α(x) ≡


xi,α l = 0

φ
(
zl−1,t
i,α (x)

)
l > 0

, (28)

(29)

zl,ti,α(x) ≡


1√
n0

∑
j∈[n0]

1√
2k+1

∑
β∈[±k] ω

l
ij,βy

l,t
j,α+β(x) + bli , l = 0

1√
nl(t)

∑
j∈[nl(t)]

1√
2k+1

∑
β∈[±k] ω

l
ij,βy

l,t
j,α+β(x) + bli , l > 0

. (30)

This network induces a sequence of covariances matrices Kl
t (which are R.V.s): for l ≥ 0 and t ≥ 0,

for x, x′ ∈ X

[
Kl
t

]
α,α′

(x, x′) ≡ 1

nl(t)

nl(t)∑
i=1

yl,ti,α(x)yl,ti,α′(x
′). (31)

We make an extra assumption on the parameters.

Assumption: all R.V.s in W are Gaussian distributed.

Notation. Let PSDm denote the set of m×m positive semi-definite matrices and for R ≥ 1, define

PSDm(R) ≡ {Σ ∈ PSDm : 1/R ≤ Σα,α ≤ R for 1 ≤ α ≤ m} . (32)

Further let T∞ : PSD2 → R be a function given by

T∞(Σ) ≡ E(x,y)∼N (0,Σ) [φ(x)φ(y)] , (33)

17

and Ck (φ,R) (may equal to∞) denotes the uniform upper bound for the k-th moment

Ck (φ,R) ≡ sup
1/R≤r≤R

Ex∼N (0,r) |φ(x)|k . (34)

Let Ψ denotes the space of measurable functions with the following properties:

1. Uniformly square-integrable: C2 (φ,R) <∞.
2. Lipschitz continuity: for every R ≥ 1, there exists β = β (φ,R) > 0 such that for all

Σ,Σ′ ∈ PSD2(R),

|T∞(Σ)− T∞(Σ′)| ≤ β ‖Σ− Σ′‖∞ ; (35)

3. Uniform convergence in probability: for every R ≥ 1 and every ε > 0 there exists
a positive sequence ρn(φ, ε,R) with ρn(φ, ε,R) → 0 as n → ∞ such that for every
Σ ∈ PSD2(R) and any {(xi, yi)}ni=1 i.i.d. ∼ N (0,Σ)

P

(∣∣∣∣∣ 1n
n∑
i=1

φ (xi)φ (yi)− T∞(Σ)

∣∣∣∣∣ > ε

)
≤ ρn(φ, ε,R). (36)

We will also use Ψ1,Ψ2 and Ψ3 to denote the spaces of functions satisfying property 1, property 2
and property 3, respectively. It is not difficult to see that for every i, Ψi is a vector space, and so is
Ψ = ∩iΨi.

Finally, we say that a function f : R→ R is exponentially bounded if there exist a, b > 0 such that

|f(x)| ≤ aeb|x| a.e. (almost everywhere) (37)

We now prove our main result presented in §2.2 through the following three theorems.
Theorem A.3. If φ′ is exponentially bounded then φ ∈ Ψ.

Theorem A.4. If φ ∈ Ψ, then for l ≥ 0, Kl
t
P→ Kl

∞.

Theorem A.5. If for l ≥ 0, Kl
t
P→ Kl

∞ and m ≥ 1, the joint distribution of
[
zl,tj

]
j∈[m]

converges in

distribution to a multivariate normal distribution with mean zero and covariance A
(
Kl
∞
)
⊗ Im.

The proofs of Theorems A.3, A.4, and A.5 can be found in §A.8.7, §A.8.6, and §A.8.5 respectively.

A.8.5 Proof of Theorem A.5

It suffices to prove that for any vector [ai(x)]i∈[m], x∈X ∈ Rm|X |,

∑
i∈[m]
x∈X

ai(x)zl,ti (x)
D−→ N

0,
∑

i∈[m], x∈X

ai(x)TA
(
Kl
∞
)
ai(x)

 . (38)

Indeed, the characteristic function

E exp

i ∑
i∈[m], x∈X

ai(x)zl,ti (x)

 (39)

=E exp

i ∑
i∈[m]
x∈X

ai(x)

 1√
nl(t)

∑
j∈[nl(t)]

1√
2k + 1

∑
β∈[±k]

ωlij,βy
l,t
j,α+β(x) + bli


 . (40)

Note that conditioned on
{
yl,tj

}
j∈[nl(t)]

, the exponent in the above expression is just a linear

combination of independent Gaussian R.V.s
{
ωlij,β , b

l
i

}
, which is also a Gaussian. Integrating

18

out these R.V.s using the formula of the characteristic function of Gaussian distribution yields

E exp

i ∑
i∈[m], x∈X

ai(x)zl,ti (x)

 (41)

= E exp

−1

2

∑
i∈[m]

aTi
(
A
(
Kl
t

))
ai

 (42)

−→ exp

−1

2

∑
i∈[m]

aTi
(
A
(
Kl
∞
))
ai

 as t→∞ , (43)

where have used Kl
t
P−→ Kl

∞ in the last step. Therefore, Equation 38 is true by Theorem A.1 (iii).

Remark A.2. We briefly comment how to handle the cases when stacking an average pooling, a
subsampling or a dense layer after flattening the activations in the last layer.

1. Global Average pooling / subsampling. Let B ∈ R1×d be any deterministic linear func-
tional defined on Rd. The fact that

Kl
t

P−→ Kl
∞ (44)

implies that the empirical covariance of
{
Byl,tj

}
1

nl(t)

∑
j∈nl(t)

B⊗|X|yl,tj

(
B⊗|X|yl,tj

)T P−→ B⊗|X|Kl
∞

(
B⊗|X|

)T
(45)

where B⊗|X| ∈ R1×d|X |, |X | copies of B. Invoking the same “characteristic function”
arguments as above, it is not difficult to show that stacking a dense layer (assuming the
weights and biases are drawn from i.i.d. Gaussian with mean zero and variances σ2

ω and σ2
b ,

and are properly normalized) on top of
{
Byl,tj

}
the outputs are i.i.d. Gaussian with mean

zero and covariance σ2
ωB
⊗|X|Kl

∞
(
B⊗|X|

)T
+ σ2

b .

Taking B =
(

1
d , . . . ,

1
d

)
∈ R1×d (or B = eα ∈ R1×d) implies the result of global average

pooling (§2.3.2.1), or subsampling (§2.3.2.2).

2. Vectorization and a dense layer. Let
{
ωlij,α

}
i∈[m],j∈[nl(t)],α∈[d]

be the weights of the dense

layer, ωlij,α represents the weight connecting the α-th pixel of the j-channel to the i-th
output. Note that the range of α is [d] not [±k] because there is no weight sharing. Define
the outputs to be

fi(x) =
1√
dnl(t)

∑
α∈[d]

∑
j∈[nl(t)]

ωlij,αy
l,t
j,α(x) + bli (46)

Now let [ai(x)]i∈[m],x∈X ∈ Rm|X | and compute the characteristic function of

∑
i,x

ai(x)fi(x). (47)

19

Using the fact Eωij,αωi′j′,α′ = 0 unless (ij, α) = (i′j′, α′) and integrating out the R.V.s of
the dense layer, the characteristic function is equal to

E exp

−1

2

∑
i∈[m]

∑
x,x′∈X

ai(x)ai(x
′)

 1

dnl(t)

∑
j∈[nl(t)]
α∈[d]

σ2
ωy

l,t
j,α(x)yl,tj,α(x′) + σ2

b



(48)

= E exp

−1

2

∑
i∈[m]

∑
x,x′∈X

ai(x)ai(x
′)t̄r
(
σ2
ωK

l
t(x, x

′) + σ2
b

) (49)

−→ exp

−1

2

∑
i∈[m]

∑
x,x′∈X

ai(x)ai(x
′)t̄r
(
σ2
ωK

l
∞(x, x′) + σ2

b

) , (50)

where t̄r denotes the mean trace operator acting on the pixel by pixel matrix, i.e.
the functional computing the mean of the diagonal terms of the pixel by pixel ma-
trix. Therefore [fi]i∈[m] converges weakly to a mean zero Gaussian with covariance[
σ2
ω t̄r
(
Kl
∞(x, x′)

)
+ σ2

b

]
x,x′∈X ⊗ Im in the case of vectorization (§2.3.1).

A.8.6 Proof of Theorem A.4

Proof. We recall KL
t and KL

∞ to be random matrices in Rd|X |×d|X |, and we will
prove convergence KL

t
P−−−→

t→∞
KL
∞ with respect to ‖ · ‖∞, the pointwise `∞-norm

(i.e. ‖K‖∞ = maxx,x′,α,α′ |Kα,α′ (x, x
′)|). Note that due to finite dimensionality of KL, con-

vergence w.r.t. all other norms follows.

We first note that the affine transform A is σ2
ω-Lipschitz and property 2 of Ψ implies that the C

operator is β-Lipschitz. Indeed, if we consider

Σ ≡
(

[K]α,α (x, x) [K]α,α′ (x, x
′)

[K]α′,α (x′, x) [K]α′,α′ (x
′, x′)

)
, (51)

then [C (K)]α,α′ (x, x
′) = T∞(Σ). Thus C ◦ A is σ2

ωβ-Lipschitz.

We now prove the theorem by induction. Assume Kl
t
P→ Kl

∞ as t→∞ (obvious for l = 0).

Let ε > 0 be sufficiently small so that the ε
2β -neighborhood of A(Kl

∞) is contained in PSD|X |d(R),
where we take R to be large enough for Kl

∞ to be an interior point of PSD|X |d(R).

Since∥∥Kl+1
∞ −Kl+1

t

∥∥
∞ ≤

∥∥Kl+1
∞ − C ◦ A

(
Kl
t

)∥∥
∞ +

∥∥C ◦ A (Kl
)
−Kl+1

t

∥∥
∞ (52)

=
∥∥C ◦ A (Kl

∞
)
− C ◦ A

(
Kl
t

)∥∥
∞ +

∥∥C ◦ A (Kl
t

)
−Kl+1

t

∥∥
∞ , (53)

to prove Kl+1
t

P→ Kl+1
∞ , it suffices to show that for every δ > 0, there is a t∗ such that for all t > t∗,

P
(∥∥C ◦ A (Kl

∞
)
− C ◦ A

(
Kl
t

)∥∥
∞ >

ε

2

)
+ P

(∥∥C ◦ A (Kl
t

)
−Kl+1

t

∥∥
∞ >

ε

2

)
< δ. (54)

By our induction assumption, there is a tl such that for all t > tl

P

(∥∥Kl
∞ −Kl

t

∥∥
∞ >

ε

2σ2
ωβ

)
<
δ

3
. (55)

Since C ◦ A is σ2
ωβ-Lipschitz, then

P
(∥∥C ◦ A (Kl

∞
)
− C ◦ A

(
Kl
t

)∥∥
∞ >

ε

2

)
<
δ

3
. (56)

20

To bound the second term in Equation 54, let U (t) denotes the event

U (t) ≡
{
A
(
Kl
t

)
∈ PSD|X |d (R)

}
(57)

and U (t)
c its complement. For all t > tl it’s probability is

P (U (t)
c
) < P

(∥∥A (Kl
∞
)
−A

(
Kl
t

)∥∥
∞ >

ε

2β

)
[assumption on small ε] (58)

< P

(
σ2
ω

∥∥Kl
∞ −Kl

t

∥∥
∞ >

ε

2β

) [
A is σ2

ω-Lipshitz
]

(59)

= P

(∥∥Kl
∞ −Kl

t

∥∥
∞ >

ε

2σ2
ωβ

)
<
δ

3
. [Equation 55] (60)

Finally, denote

[V (t)]α,α′ (x, x
′) ≡

{∣∣∣[C ◦ A (Kl
t

)]
α,α′

(x, x′)−
[
Kl+1
t

]
α,α′

(x, x′)
∣∣∣ > ε

2

}
. (61)

The fact{∥∥C ◦ A (Kl
t

)
−Kl+1

t

∥∥
∞ >

ε

2

}
⊆ U (t)

c
⋃ ⋃

x,x′,α,α′

[V (t)]α,α′ (x, x
′)
⋂
U (t)


implies

P
({∥∥C ◦ A (Kl

t

)
−Kl+1(t)

∥∥
∞ >

ε

2

})
≤ δ

3
+ |X |2d2 max

x,x′,α,α′
P
(

[V (t)]α,α′ (x, x
′) ∩ U (t)

)
,

(62)

Where the maximum is taken over all (x, x′, α, α′) ∈ X 2 × [d].

Consider a fixed κ ∈ PSD|X |d, and define

Σ (κ, α, α′, x, x′) ≡
(

[A (κ)]α,α (x, x) [A (κ)]α,α′ (x, x
′)

[A (κ)]α′,α (x′, x) [A (κ)]α′,α′ (x
′, x′)

)
, (63)

a deterministic matrix in PSD2. Then

[C ◦ A (κ)]α,α′ (x, x
′) = T∞ (Σ (κ, α, α′, x, x′)) , (64)

and, conditioned on Kl
t ,

[
Kl+1
t |Kl

t = κ
]
α,α′

(x, x′) =
1

nl+1(t)

nl+1(t)∑
i=1

φ
(
zl,ti,α (x)

)
φ
(
zl,ti,α′ (x

′)
)
, (65)

where
{(
zl,ti,α(x), zl,ti,α′(x

′)
)
|Kl

t = κ
}
i∈[nl+1(t)]

are i.i.d. ∼ N (0,Σ (κ, α, α′, x, x′)).

Then if Σ (κ, α, α′, x, x′) ∈ PSD2 (R) we can apply property 3 of Ψ to conclude that:

P
((

[V (t)]α,α′ (x, x
′) ∩ U (t)

) ∣∣∣Kl
t = κ

)
< ρnl+1(t)

(
φ,R,

ε

2

)
. (66)

However, if Σ (κ, α, α′, x, x′) 6∈ PSD2 (R), then necessarily A (κ) 6∈ PSD|X |d (R) (since
Σ (κ, α, α′, x, x′) ∈ PSD2), ensuring that P

(
U (t) |Kl

t = κ
)

= 0. Therefore Equation 66 holds for
any κ ∈ PSD|X |d, and for any (x, x′, α, α′) ∈ X 2 × [d]

2.

We further remark that ρnl+1(t)

(
φ,R, ε2

)
is deterministic and does not depend on (κ, x, x′, α, α′).

Marginalizing out Kl
t and maximizing over (x, x′, α, α′) in Equation 66 we conclude that

max
x,x′,α,α′

P
(

[V (t)]α,α′ (x, x
′) ∩ U (t)

)
< ρnl+1(t)

(
φ,R,

ε

2

)
. (67)

21

Since ρn
(
φ,R, ε2

)
→ 0 as n→∞, there exists n such that for any nl+1(t) ≥ n,

max
x,x′,α,α′

P
(

[V (t)]α,α′ (x, x
′) ∩ U (t)

)
< ρnl+1(t)

(
φ,R,

ε

2

)
≤ δ

3|X |2d2
, (68)

and, substituting this bound in Equation 62,

P
({∥∥C ◦ A (Kl

t

)
−Kl+1

t

∥∥
∞ >

ε

2

}
∩ U (t)

)
<

2δ

3
. (69)

Therefore we just need to choose tl+1 > tl so that nl+1(t) ≥ n for all t > tl+1.

Remark A.3. We list some directions to strengthen / extent the results of Theorem A.4 (and thus
Theorem A.5) using the above framework.

1. Consider stacking a deterministic channel-wise linear operator right after the convolutional
layer. Again, strided convolution, convolution with no (“valid”) padding and (non-global)
average pooling are particular examples of this category. Let B ∈ Rd′×d denote a linear
operator. Then the recurrent formula between two consecutive layers is

Kl+1
∞ = C ◦ B ◦ A(Kl

∞) (70)

where B is the linear operator on the covariance matrix induced by B. Conditioned on
Kl
t , since the outputs after applying the linear operator B are still i.i.d. Gaussian (and the

property 3 is applicable), the analysis in the above proof can carry over with A replaced by
B ◦ A.

2. More generally, one may consider inserting an operator op (e.g. max-pooling, dropout and
more interestingly, normalization) in some hidden layer.

3. It is possible to drop the Gaussianity assumption on the weight parameters by incorporating
the proof of the central limit theorem using characteristic function into the above arguments.

A.8.7 Proof of Theorem A.3

Note that exponentially bounded functions contain all polynomials, and are closed under multiplica-
tion and integration in the sense that for any constant C the function∫ x

0

φ(t)dt+ C (71)

is also exponentially bounded. Theorem A.3 is a consequence of the following lemma.

Lemma A.6. The following is true:

1. for k ≥ 1, Ck (φ,R) <∞ if φ is exponentially bounded.

2. φ ∈ Ψ2 if φ′ exists a.e. and is exponentially bounded.

3. φ ∈ Ψ3 if C4 (φ,R) <∞.

Indeed, if φ′ is exponentially bounded, then φ is also exponentially bounded. By the above lemma,
φ ∈ Ψ.

Proof of Lemma A.6. 1. We prove the first statement. Assume |φ(x)| ≤ aeb|x|.

Ex∼N (0,r) |φ (x)|k = Ex∼N (0,1)

∣∣φ (√rx)∣∣k ≤ Ex∼N (0,1)

∣∣∣ae√rb|x|∣∣∣k ≤ 2akek
2b2r/2. (72)

Thus

Ck (φ,R) = sup
1/R≤r≤R

Ex∼N (0,r) |φ (x)|k ≤ 2akek
2b2R/2. (73)

22

2. To prove the second statement, let Σ,Σ′ ∈ PSD2(R) and define A (similarly for A′):

A ≡

(√
Σ11 0

Σ12√
Σ11

√
Σ22Σ11−Σ2

12

Σ11

)
. (74)

Then AAT = Σ (and A′A′T = Σ′). Let

A(t) ≡ (1− t)A+ tA′, t ∈ [0, 1] (75)

and

f(w) ≡ φ(x)φ(y) where w ≡ (x, y)T . (76)

Since φ′ is exponentially bounded, φ is also exponentially bounded. In addition, p (‖w‖2) ‖∇f(w)‖2
is exponentially bounded for any polynomial p (‖w‖2).

Applying the Mean Value Theorem (we use the notation . to hide the dependence on R and other
absolute constants)

|T∞(Σ)− T∞(Σ′)| = 1

2π

∣∣∣∣∫ (f (Aw)− f (A′w)) exp
(
−‖w‖22 /2

)
dw

∣∣∣∣ (77)

=
1

2π

∣∣∣∣∣
∫ ∫

[0,1]

(∇f (A(t)w)) ((A′ −A)w) exp
(
−‖w‖22 /2

)
dtdw

∣∣∣∣∣ (78)

.
∫

[0,1]

∫
‖(A′ −A)w‖2 ‖∇f (A(t)w)‖2 exp

(
−‖w‖22 /2

)
dwdt (79)

≤
∫

[0,1]

∫
‖A′ −A‖op ‖w‖2 ‖∇f (A(t)w)‖2 exp

(
−‖w‖22 /2

)
dwdt. (80)

Note that the operator norm is bounded by the infinity norm (up to a multiplicity constant) and
‖w‖2 ‖∇f (A(t)w)‖2 is exponentially bounded. There is a constant a (hidden in .) and b such that
the above is bounded by∫

[0,1]

∫
‖A′ −A‖∞ exp (b ‖A(t)‖∞ ‖w‖2) exp

(
−‖w‖22 /2

)
dwdt (81)

. ‖A′ −A‖∞
∫

[0,1]

∫
exp

(
b
√
R ‖w‖2 − ‖w‖

2
2 /2

)
dwdt (82)

. ‖A′ −A‖∞ (83)

. ‖Σ′ − Σ‖∞ . (84)

Here we have applied the facts

‖A′ −A‖∞ . ‖Σ− Σ′‖∞ and ‖A(t)‖∞ ≤
√
R. (85)

3. Chebyshev’s inequality implies

P

(∣∣∣∣∣ 1n
n∑
i=1

φ (xi)φ (yi)− T∞ (Σ)

∣∣∣∣∣ > ε

)
(86)

≤ 1

nε2
Var (φ (xi)φ (yi)) ≤

1

nε2
E |φ (xi)φ (yi)|2 (87)

≤ 1

nε2
C4 (φ,R)→ 0 as n→∞. (88)

Remark A.4. In practice the 1/n decay bound obtained by Chebyshev’s inequality in Equation 88
is often too weak to be useful. However, if φ is linearly bounded, then one can obtain an exponential
decay bound via the following concentration inequality:

23

Lemma A.7. If |φ(x)| ≤ a + b|x| a.e., then there is an absolute constant c > 0 and a constant
κ = κ(a, b, R) > 0 such that property 3 (Equation 36) holds with

ρn(φ, ε,R) = 2 exp

(
−cmin

{
n2ε2

(2κ)2
,
nε

2κ

})
. (89)

Proof. We postpone the proof of the following claim.

Claim A.8. Assume |φ(x)| ≤ a+b|x|. Then there is a κ = κ(a, b, R) such that for all Σ ∈ PSD2(R)
and all p ≥ 1, (

E(x,y)∼N (0,Σ)|φ(x)φ(y)|p
)1/p ≤ κp. (90)

Claim A.8 and the triangle inequality imply(
E(x,y)∼N (0,Σ)|φ(x)φ(y)− Eφ(x)φ(y)|p

)1/p ≤ 2κp. (91)

We can apply Bernstein-type inequality [40, Lemma 5.16] to conclude that there is a c > 0 such that
for every Σ ∈ PSD2(R) and any {(xi, yi)}ni=1 i.i.d. ∼ N (0,Σ)

P

(∣∣∣∣∣ 1n
n∑
i=1

φ (xi)φ (yi)− T∞(Σ)

∣∣∣∣∣ > ε

)
≤ 2 exp

(
−cmin

{
n2ε2

(2κ)2
,
nε

2κ

})
. (92)

It remains to prove Claim A.8. For p ≥ 1,(
E(x,y)∼N (0,Σ)|φ(x)φ(y)|p

)1/p ≤ (Ex∼N (0,Σ11)|φ(x)|2p
)1/2p (Ey∼N (0,Σ22)|φ(y)|2p

)1/2p
(93)

≤
(
a+ b

(
E|x|2p

)1/2p)(
a+ b

(
E|y|2p

)1/2p)
(94)

≤
(
a+ b

√
R
(
Eu∼N (0,1)|u|2p

)1/2p)2

(95)

≤
(
a+ b

√
R
(
c′2ppp

)1/2p)2

(96)

≤
(
a+ bc′2

√
R
)2

p (97)

≡κp. (98)

We applied Cauchy-Schwarz’ inequality in the first inequality, the triangle inequality in the second
one, the fact Σ11,Σ22 ≤ R in the third one, absolute moments estimate of standard Gaussian in the
fourth one, where c′ is a constant such that(

Eu∼N (0,1)|u|p
)1/p ≤ c′√p. (99)

A.9 Glossary and notation

We use the following shorthands in this work:

1. NN - neural network;

2. CNN - convolutional neural network;

3. LCN - locally-connected network, a.k.a. convolutional network without weight sharing;

4. FCN - fully connected network, a.k.a. multilayer perceptron (MLP);

5. GP - Gaussian process;

6. X-GP - a GP equivalent to a Bayesian infinitely wide neural network of architecture X (§2).

7. MC-(X-)-GP - a Monte Carlo estimate (§A.5) of the X-GP.

8. Width, (number of) filters, (number of) channels represent the same property for CNNs and
LCNs.

24

9. Pooling - referring to architectures as “with” or “without pooling” means having a single
global average pooling layer (collapsing the spatial dimensions of the activations xL+1)
before the final linear FC layer giving the regression outputs zL+1.

10. Invariance and equivariance are always discussed w.r.t. translations in the spatial dimensions
of the inputs.

11. Whenever an index is omitted, the variable is assumed to contain all possible entries along
the respective dimension. E.g. y0 is a vector of size |X |n0d,

[
Kl
]
α,α′

is a matrix of shape
|X | × |X |, zlj is a vector of size |X | d, etc.

12. Our work concerns proving that the top-layer pre-activations zL converge in distribution to
an |X |nL+1d-variate normal random vector with a particular covariance matrix of shape(
|X |nL+1d

)
×
(
|X |nL+1d

)
as min

{
n1, . . . , nL

}
→ ∞. We emphasize that only the

channels in hidden layers are taken to infinity, and nL+1, the number of channels in the
top-layer pre-activations zL, remains fixed. Therefore for convergence proofs, we always
consider zl, yl, as well as any of their indexed subsets like zlj , y

l
i,α to be 1D vector random

variables, while Kl, as well as any of their indexed subsets (when applicable, e.g.
[
Kl
]
α,α′

,[
Kl
]

(x, x′)) to be 2D matrix random variables.

A.10 Experimental Setup

Throughout this work we only consider 3× 3 (possibly unshared) convolutional filters with stride 1
and no dilation.

All inputs are normalized to have zero mean and unit variance, i.e. lie on the d−dimensional sphere
of radius

√
d, where d is the total dimensionality of the input. All labels are treated as regression

targets with zero mean. I.e. for a single-class classification problem with C classes targets are
C−dimensional vectors with −1/C and (C − 1)/C entries in incorrect and correct class indices
respectively.

If a subset of a full dataset is considered for computational reasons, it is randomly selected in a
balanced fashion. No data augmentation is used.

All experiments were implemented in Tensorflow [1] and executed with the help of Vizier [15]. All
neural networks are trained using Adam [18] minimizing the mean squared error loss.

A.10.1 Many-channel CNNs and LCNs

Relevant Figures: 2 (b), 6, 7.

We use a training and validation subsets of CIFAR10 of sizes 500 and 4000 respectively. All images
are bilinearly downsampled to 8× 8 pixels. All models have 3 hidden layers with an erf nonlinearity.
No (“valid”) padding is used.

Weight and bias variances are set to σ2
ω ≈ 1.7562 and σ2

b ≈ 0.1841, corresponding to the pre-
activation variance fixed point q∗ = 1 [33] for the erf nonlinearity.

NN training proceeds for 219 gradient updates, but aborts if no progress on training loss is observed
for the last 100 epochs. If the training loss does not reduce by at least 10−4 for 20 epochs, the
learning rate is divided by 10.

All computations are done with 32-bit precision.

The following NN parameters are considered4:

1. Architecture: CNN or LCN.

2. Pooling: no pooling or a single global average pooling (averaging over spatial dimensions)
before the final FC layer.

3. Number of channels: 2k for k from 0 to 12.
4Due to time and memory limitations certain large configurations could not be evaluated. We believe this did

not impact the results of this work in a qualitative way.

25

4. Initial learning rate: 10−k for k from 0 to 15.

5. Weight decay: 0 and 10−k for k from 0 to 8.

6. Batch size: 10, 25, 50, 100, 200.

For NNs, all models are filtered to only 100%-accurate ones on the training set and then for each
configuration of {architecture, pooling, number of channels} the model with the lowest validation
loss is selected among the configurations of {learning rate, weight decay, batch size}.

For GPs, the same CNN-GP is plotted against CNN and LCN networks without pooling. For LCN with
pooling, inference was done with an appropriately rescaled CNN-GP kernel, i.e.

(
Kvec
∞ − σ2

b

)
/d+σ2

b ,
where d is the spatial size of the penultimate layer. For CNNs with pooling, a Monte Carlo estimate
was computed (see §A.5) with n = 212 filters and M = 26 samples.

For GP inference, the initial diagonal regularization term applied to the training convariance matrix is
10−10; if the cholesky decompisition fails, the regularization term is increased by a factor of 10 until
it either succeeeds or reaches the value of 105, at which point the trial is considered to have failed.

A.10.2 Monte Carlo Evaluation of Intractable GP Kernels

Relevant Figures: 3, 4.

We use the same setup as in §A.10.1, but training and validation sets of sizes 2000 and 4000
respectively.

For MC-GPs we consider the number of channels n (width in FCN setting) and number of NN
instantiations M to accept values of 2k for k from 0 to 10.

Kernel distance is computed as ‖K∞ −Kn,M‖2F / ‖K∞‖
2
F , where K∞ is substituted with K210,210

for the CNN-GP pooling case (due to impracticality of computing the exactKpool
∞). GPs are regularized

in the same fashion as in §A.10.1, but the regularization factor starts at 10−4 and ends at 1010 and is
multiplied by the mean of the training covariance diagonal.

A.10.3 Transforming a GP over spatial locations into a GP over classes

Relevant Figure: 1.

We use the same setup as in §A.10.2, but rescale the input images to size of 31× 31, so that at depth
15 the spatial dimension collapses to a 1 × 1 patch if no padding is used (hence the curve of the
CNN-GP without padding halting at that depth).

For MC-CNN-GP with pooling, we use samples of networks with n = 16 filters. Due to computa-
tional complexity we only consider depths up to 31 for this architecture. The number of samples M
was selected independently for each depth among

{
2k
}

for k from 0 to 15 to maximize the validation
accuracy on a separate 500-points validation set. This allowed us to avoid the poor conditioning of
the kernel. GPs are regularized in the same fashion as in §A.10.1, but for MLP-GP the multiplicative
factor starts at 10−4 and ends at 1010.

A.10.4 Relationship to Deep Signal Propagation

Relevant Table: 3.

We use a training and validation subsets of CIFAR10 of sizes 500 and 1000 respectively.

We use the erf nonlinearity. For CNN-GP, images are zero-padded (“same” padding) to maintain the
spatial shape of the activations as they are propagated through the network.

Weight and bias variances (horizontal axis σ2
ω and vertical axis σ2

b respectively) are sampled from a
uniform grid of size 50× 50 on the range [0.1, 5]× [0, 2] including the endpoints.

All computations are done with 64-bit precision. GPs are regularized in the same fashion as in
§A.10.1, but the regularization factor is multiplied by the mean of the training covariance diagonal. If
the experiment fails due to numerical reasons, 0.1 (random chance) validation accuracy is reported.

26

A.10.5 CNN-GP on full datasets

Relevant Table: 2, Figure 2 (a, c).

We use full training, validation, and test sets of sizes 50000, 10000, and 10000 respectively for
MNIST [24] and Fashion-MNIST [44], 45000, 5000, and 10000 for CIFAR10 [19]. We use validation
accuracy to select the best configuration for each model (we do not retrain on valdiation sets).

GPs are computed with 64-bit precision, and NNs are trained with 32-bit precision. GPs are
regularized in the same fashion as in §A.10.4.

Zero-padding (“same”) is used.

The following parameters are considered:

1. Architecture: CNN or FCN.
2. Nonlinearity: erf or ReLU.
3. Depth: 2k for k from 0 to 4 (and up to 25 for MNIST and Fashion-MNIST datasets).
4. Weight and bias variances. For erf: q∗ from {0.1, 1, 2, . . . , 8}. For ReLU: a fixed weight

variance σ2
ω = 2 + 4e−16 and bias variance σ2

b from {0.1, 1, 2, . . . , 8}.

On CIFAR10, we additionally train NNs for 218 gradient updates with a batch size of 128 with
corresponding parameters in addition to5

1. Pooling: no pooling or a single global average pooling (averaging over spatial dimensions)
before the final FC layer (only for CNNs).

2. Number of channels or width: 2k for k from 1 to 9 (and up to 210 for CNNs with pooling in
Figure 2, a).

3. Learning rate: 10−k × 216/ (width× q∗) for k from 5 to 9, where width is substituted with
the number of channels for CNNs and q∗ is substituted with σ2

b for ReLU networks. “Small
learning rate” in Table 2 refers to k ∈ {8, 9}.

4. Weight decay: 0 and 10−k for k from 0 to 5.

For NNs, all models are filtered to only 100%-accurate ones on the training set (expect for values
in parentheses in Table 2). The reported values are then reported for models that achieve the best
validation accuracy.

A.10.6 Model comparison on CIFAR10

Relevant Table: 1.

We use the complete CIFAR10 dataset as described in §A.10.5 and consider 8-layer ReLU models
with weight and bias variances of σ2

ω = 2 and σ2
b = 0.01. The number of channels / width is set to

25, 210 and 212 for LCN, CNN, and FCN respectively.

GPs are computed with 64-bit precision, and NNs are trained with 32-bit precision. No padding
(“valid”) is used.

NN training proceeds for 218 gradient updates with batch size 64, but aborts if no progress on training
loss is observed for the last 10 epochs. If the training loss does not reduce by at least 10−4 for 2
epochs, the learning rate is divided by 10. Values for NNs are reported for the best validation accuracy
over different learning rates (10−k for k from 2 to 12) and weight decay values (0 and 10−k for k
from 2 to 7). For GPs, validation accuracy is maximized over initial diagonal regularization terms
applied to the training convariance matrix: 10−k × [mean of the diagonal] for k among 2, 4 and 9
(if the cholesky decompisition fails, the regularization term is increased by a factor of 10 until it
succeeeds or k reaches the value of 10).

5Due to time and compute limitations certain large configurations could not be evaluated. We believe this did
not impact the results of this work in a qualitative way.

27

	Introduction
	Many-channel Bayesian CNNs are Gaussian processes
	Discussion
	Appendix
	Further model comparison
	Related work and summary of contributions
	Review of exact Bayesian regression with GPs
	Relationship to Deep Signal Propagation
	Monte Carlo evaluation of intractable GP kernels
	Strided convolutions, average pooling in intermediate layers, higher dimensions
	Additional Figures
	Equivalence between randomly initialized NNs and GPs
	Setup
	Preliminary
	Sequential limit
	Simultaneous limit
	Proof of Theorem A.5
	Proof of Theorem A.4
	Proof of Theorem A.3

	Glossary and notation
	Experimental Setup
	Many-channel CNNs and LCNs
	Monte Carlo Evaluation of Intractable GP Kernels
	Transforming a GP over spatial locations into a GP over classes
	Relationship to Deep Signal Propagation
	CNN-GP on full datasets
	Model comparison on CIFAR10

