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Abstract

Much recent work has been devoted to determining neural network architectures
that are invariant (and equivariant) under the action of a group. We treat the
neural network input and output as random variables, and consider permutation-
invariance from the probabilistic perspective of exchangeability. What neural
network architectures are possible when the input is an exchangeable sequence
and the conditional distribution of the output is assumed to be invariant under
permutations of the input? We obtain two general representation results that
together determine the architecture of an invariant stochastic feed-forward network.
We also recover some recent results as special deterministic cases.

We consider the problem of using a neural network to model the distribution of a random variable Y
conditioned on an exchangeable sequence Xn := (X1, . . . , Xn). Y might represent a latent encoding
of Xn, a prediction Xn+1, or a label relevant to Xn. We do not consider any specific problem; rather,
we focus on how distributional symmetry affects possible neural network architectures. In particular,
we require that the conditional distribution PY |Xn

of Y given Xn be invariant to permutations of Xn

and ask,

How does requiring permutation invariance constrain the neural network architecture?

A similar problem was considered by Zaheer et al. [10]; those authors posited a deterministic model
Y = f(Xn) for some function f , and considered the class of permutation-invariant functions. The
approach here is probabilistic, and draws upon tools from probability and statistics to answer the
question above in a way that is both theoretically general and practically useful. In particular, we
establish the functional representation of Y when its conditional distribution PY |Xn

is invariant
to permutations of Xn. In doing so, we characterize the functional structure of stochastic neural
networks such that the distribution of the output is invariant under permutations of the input: all such
networks must be composed of stochastic equivariant modules and stochastic invariant modules. This
echoes the results for deterministic networks in [10] but is substantially more general: the requirement
of distributionally invariant output is weaker than deterministic invariance, and our results recover
those of [10] in the special case that the conditional distribution of Y given Xn is a point mass at
f(Xn). Our results also allow for more flexible network architectures than the standard multi-layer
perceptron’s activation of linear combinations.

The rest of the paper is structured as follows. In Section 1, we define the basic properties of interest.
The main results are stated in Section 2, along with an illustration of their practical implications. All
technical arguments and proofs are given in Appendix A.
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1 Preliminaries

We begin with the necessary definitions. Let Xn := (X1, . . . , Xn) be a random X -valued sequence.1
Denote the Borel σ-algebra of Xn by B(Xn) and the set of all permutations of n elements by Sn. A
probability distribution P on Xn is finitely exchangeable if for every B1, . . . , Bn ∈ B(Xn),

P [X1 ∈ B1, . . . , Xn ∈ Bn] = P [Xπ(1) ∈ B1, . . . , Xπ(n) ∈ Bn] for each π ∈ Sn . (1)

That is, P is invariant to all permutations of the elements of Xn. We write X[n]
d
= π ·X[n] = Xπ·[n]

to denote this equality in distribution. More commonly encountered is infinite exchangeability, which
requires probabilistic coherence between the finite-dimensional distributions of an infinite sequence
XN. Only finitely exchangeable sequences of fixed length are considered here; for convenience we
say that a sequence Xn is exchangeable if its distribution is finitely exchangeable.

Let Y ∈ Y be some random variable of interest, to be predicted from Xn. Permutation invariance of
the conditional distribution PY |Xn

of Y given Xn is defined as follows.

Definition 1. The conditional distribution PY |Xn
of Y given Xn is Sn-invariant if for all B ∈ B(Y)

and π ∈ Sn,

PY |Xn
[Y ∈ B | π ·Xn] = PY |Xn

[Y ∈ B | Xn] a.s.-PXn . (2)

Together with exchangeability of PXn
, conditional invariance implies the joint equality

(π ·Xn, Y )
d
= (Xn, Y ) for all π ∈ Sn.

In the neural networks literature, equivariance plays a key role in the hidden layers of invariant
deterministic neural networks [2, 8, 6]. As we show in Section 2, the following adaptation to random
variables plays the same role in Sn-invariant stochastic neural networks.
Definition 2. Let Yn ∈ Yn be a random Y-valued sequence. The conditional distribution PYn|Xn

of Yn given Xn is Sn-equivariant if for all B ∈ B(Yn) and π ∈ Sn,

PYn|Xn
[π ·Yn ∈ B | π ·Xn] = PYn|Xn

[Yn ∈ B | Xn] a.s.-PXn
. (3)

Together with exchangeability of PXn
, conditional invariance implies the joint equality

(π ·Xn, π ·Yn)
d
= (Xn,Yn) for all π ∈ Sn.

2 Main results

In this section, we state our main results. Proofs are given in Appendix A. Both of the main results
express Y in terms of a stochastic function of the empirical measure of Xn, which is defined as

MXn
( • ) =

n∑
i=1

δXi
( • ) , (4)

where δXi denotes an atom of unit mass at Xi;2 it can be viewed as a generalization of a one-hot
encoding to arbitrary spaces. As such, MXn can be thought of as a pooling function that is invariant
under permutations; it discards the order of the elements of Xn, but retains all other information.
Furthermore, any function of the empirical measure is invariant to permutations of Xn.

The first main result characterizes the functional relationship between Xn and Y , for any Y such
that PY |Xn

is Sn-invariant. We use the notation X⊥⊥Y to indicate that X and Y are stochastically
independent, and X⊥⊥ZY to indicate that X and Y are conditionally independent, given Z.
Theorem 3 (Invariant representation). For fixed n ∈ N, suppose Xn ∈ Xn, is an exchangeable
sequence and Y ∈ Y is another random variable. Then PY |Xn

is Sn-invariant if and only if there is
a measurable function f : [0, 1]×M(X )→ Y such that(

Xn, Y
) a.s.

=
(
Xn, f(η,MXn

)
)

where η ∼ Unif[0, 1] and η⊥⊥Xn . (5)
1We assume that all random variables take values in standard Borel spaces. A measurable space X is a

standard Borel space if there is a measurable bijection between X and a Borel subset of [0, 1]. See [3, Ch. 1].
2δXi(A) = 1 if Xi ∈ A and 0 otherwise, for any measurable set A.

2



Note that in the deterministic case, the noise variable η is ignored, in which case the representation is
equivalent to that in Theorem 2 of [10].

The second main result characterizes the functional relationship between Xn and Yn, for any Yn

such that PYn|Xn
is Sn-equivariant, and whose elements are conditionally independent given Xn.

The latter condition is satisfied by any architecture that does not have within-layer connections.
Theorem 4 (Equivariant representation). Let Xn ∈ Xn be an exchangeable sequence and Yn ∈ Yn
another random sequence, and assume that Yi⊥⊥Xn(Yn \ Yi) for all i ∈ [n]. Then PYn|Xn

is
Sn-equivariant if and only if there is a measurable function g : [0, 1]×X ×M(X )→ Y such that(

Xn,Yn

) a.s.
=
(
Xn,

(
g(ηi, Xi,MX)

)
i∈[n]

)
where ηi

iid∼ Unif[0, 1] and ηi⊥⊥Xn . (6)

As before, in the deterministic case the noise variables ηi are ignored. For example, Lemma 3 in
Zaheer et al. [10] is precisely that, with a particular functional form of g (activation of a linear
combination).

Finally, we establish that: (i) stochastic equivariance is transitive, which means that the repeated
composition of equivariant functions is also equivariant; and (ii) stochastic equivariance preserves
invariance.
Proposition 5 (Transitivity of equivariance and invariance).

(i) Let Xn,Yn,Z[n] be random sequences of length n such that π · (Xn,Yn)
d
= (Xn,Yn) and

π · (Yn,Z[n])
d
= (Yn,Z[n]) for all π ∈ Sn, and Xn⊥⊥YnZ[n]. Then π · (Xn,Yn,Z[n])

d
=

(Xn,Yn,Z[n]) for all π ∈ Sn.

(ii) Let Xn,Yn be random sequences of length n and Z another random variable. Suppose
that π · (Xn,Yn)

d
= (Xn,Yn) and (π · Yn, Z)

d
= (Yn, Z) for all π ∈ Sn. Then

(π ·Xn, π ·Yn, Z)
d
= (Xn,Yn, Z) for all π ∈ Sn.

Together, (i) and (ii) suggest how to construct a stochastic or deterministic neural network that is
Sn-invariant.

2.1 How to build a permutation-invariant neural network

In practice, Proposition 5 indicates that an invariant neural network can be constructed from a
sequence of equivariant function modules feeding into an invariant module. A computational diagram
of such an architecture is displayed below. The invariant module with structure determined by
Theorem 3 is shown on the left. In practice, one might learn a function Φ : X → R parameterized by
a neural network, applied to each element Xi, then pooled into the empirical measure. f , the function
of noise η and of the empirical measure produces the invariant Y . The equivariant architecture
determined by Theorem 4 is displayed in the middle. Note that there is an invariant module within
the equivariant module; however, it is purely deterministic (i.e., there is no η variable), as indicated
by the ∗. The full invariant architecture (with two equivariant layers shown) is displayed on the right.

X1 X2 X3 X4

Φ Φ Φ Φ

⊕M
f

η

Y

Invariant module

X1 X2 X3 X4

Y1 Y2 Y3 Y4

g g g g

Invariant
Module∗

Y

η1 η2 η3 η4

Equivariant module

X1 X2 X3 X4

Equivariant Module 1

Equivariant Module 2

Invariant Module

Y

Invariant function
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A Proofs of the main results

A.1 Noise outsourcing

The main technical tool that allows us to establish functional representations for the conditional
distributions of interest is a standard result from measure-theoretic probability known as transfer [3],
also called noise outsourcing [1]. For PY |Xn

, it expresses Y as a function of Xn and “outsourced”
independent noise. This type of functional representation can be viewed as a measure-theoretic
version of the so-called reparameterization trick [5, 9] for random variables taking values in fairly
general spaces (not just R).

We state the result in terms of generic random variables W and Z because it holds for more general
objects than Xn and Y as we have defined them above.
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Proposition 6 (Noise outsourcing with a d-separating statistic). Let W ∈ W and Z ∈ Z be
random variables with joint distribution PW,Z . Let S :W → S be a measurable map. Then S(W )
d-separates W and Z if and only if there is a measurable function f : [0, 1]× S → Z such that

(W,Z)
a.s.
= (W, f(η, S(W ))) where η ∼ Unif[0, 1] and η⊥⊥W . (7)

In particular, Z a.s.
= f(η, S(W )).

Note that in general f is measurable but need not be differentiable, although for modelling purposes
one can limit oneself to a differentiable function belonging to a tractable class (e.g. parameterized by
a neural network). Note also that the identity map S(ξ) = ξ d-separates ξ and ζ trivially, so that we
have ζ a.s.

= f(η, ξ). This is a standard fact from measure-theoretic probability [e.g., 3, Thm. 6.10].

A.2 d-separation with the empirical measure

The proofs of the main results rely on establishing various conditional independence relationships.
To this end, borrowing from the graphical models literature [7], we say that a statistic S : Xn → Y
d-separates Xn from Y if Y is conditionally independent from Xn, given S(Xn). We denote this by
Y⊥⊥S(Xn)Xn.

A standard fact (see Proposition 7 below) is that a distribution P on Xn is exchangeable if and
only if the conditional distribution P (Xn |MXn = m) is the uniform distribution on all sequences
(x1, . . . , xn) that have empirical measurem; that is, it is the uniform distribution on all sequences that
can be obtained by applying a permutation to Xn. Furthermore, the empirical measure characterizes
the structure of prediction from finite exchangeable sequences: it is d-separating for any random
variable Y satisfying (π ·Xn, Y )

d
= (Xn, Y ), for all π ∈ Sn (which amounts to saying that Xn is

exchangeable and the conditional distribution of Y given Xn is invariant under permutations of Xn).
In order to state the result, define the urn law of Xn as

UπXn
( • ) =

1

n!

∑
π∈Sn

δπ·Xn
( • ) . (8)

The urn law is so called because it computes the probability of generating any sequence that may be
obtained by sampling without replacement from the elements of Xn; equivalently, by applying to Xn

a permutation sampled uniformly at random from Sn.

Proposition 7 (d-separation with the empirical measure). Suppose Xn ∈ Xn for some n ∈ N. Then
Xn is exchangeable if and only if

P [Xn ∈ • |MXn
= m] = Uπm( • ) . (9)

When Xn is exchangeable, if Y is any other random variable such that (π ·Xn, Y )
d
= (Xn, Y ) for

each π ∈ Sn, then Y⊥⊥MXn
Xn.

A.3 Proof of Theorem 3

Firstly, if (5) is true then (π ·Xn, f(η,Mπ·Xn))
d
= (Xn, f(η,MXn)) for all π ∈ Sn because Xn

is exchangeable and MXn
is invariant. Conversely, assume that (π · Xn, Y )

d
= (Xn, Y ) for all

π ∈ Sn. Then by Proposition 7, Y⊥⊥MXn
Xn, which implies that MXn

is adequate for Y from Xn;
by Proposition 6, (5) holds.

A.4 Proof of Theorem 4

In order to prove Theorem 4, we require a result about equivariance under a finite group G due
to Kallenberg [4] (Prop. 7.9), adapted slightly for our purposes. To state the result, let Gx =
{g ∈ G : g · x = x} be the stabilizer of x ∈ X , and denote the distributive application of g as
g · (X,Y ) = (g ·X, g · Y ).

Proposition 8 (Kallenberg [4]). Let G be a finite group acting measurably on Borel spaces X and
Y , and consider random elements X ∈ X and Y ∈ Y such that GX ⊆ GY almost surely. Then
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g · (X,Y )
d
= (X,Y ) if and only if: (i) g ·X d

= X for all g ∈ G; and (ii) there exists a measurable
function f : [0, 1]×X → Y such that

g · Y a.s.
= f(η, g ·X) , for each g ∈ G , (10)

for a uniform random variable η⊥⊥X .

Observe that (10) implies that

f(η, g ·X) = g · Y = g · f(η,X) , for each g ∈ G .

Proof of Theorem 4. First, assume that PYn|Xn
is Sn-equivariant. The proof in this direction estab-

lishes the conditional independence relationship

Yi⊥⊥Xi,MXn
(Xn,Yn\i) , (11)

and applies Proposition 6.

Now, by Proposition 8 there exists a measurable Sn-equivariant function fy : [0, 1] × Xn → Xn
such that Yn

a.s.
= fy(η,Xn) for η ∼ Unif[0, 1] and η⊥⊥Xn. Fix i ∈ [n] and let π−i ∈ Sn be any

permutation that fixes i. Then

[fy(η, π−i ·Xn)]i = [π−i · fy(η,Xn)]i = [fy(η,Xn)]π−i(i) = [fy(η,Xn)]i = Yi ,

so that any permutation that fixes Xi also fixes Yi.

Let π′ ∈ Sn−1. Because (Xn,Yn) are Sn-equivariant,(
π′ · (X[n]\i,Yn\i), (Xi, Yi)

) d
=
(
(X[n]\i,Yn\i), (Xi, Yi)

)
for each π′ ∈ Sn−1 .

Proposition 7 and the assumption that Yi⊥⊥Xi,MX[n]\i
Yn\i therefore imply

Yi⊥⊥Xi,MX[n]\i
(Xn,Yn\i) . (12)

Now, the information contained in (Xi,MX[n]\i) is the same as that in (Xi,MXn
). Together with

(12), this implies the key conditional independence relationship (11).

By Proposition 6, there exists a measurable fi : [0, 1]×X ×M(X )→ X such that

(Xn,Yn\i, Yi)
a.s.
=
(
Xn,Yn\i, fi(ηi, Xi,MXn

)
)
,

for ηi ∼ Unif[0, 1] and ηi⊥⊥(Xn,Yn\i). This is true for each i ∈ [n], and equivariance requires that
fi = f be the same for each i (up to measure-preserving transformations of ηi), which yields (6).

In the other direction, to show that the right-hand side of (6) implies that PYn|Xn
is Sn-equivariant,

note that any permutation π ∈ Sn applied to the sequence (f(ηi, Xi,MXn
))i∈[n] is

π ·
(
f(ηi, Xi,MXn

)
)
i∈[n]

=
(
f(ηπ−1(i), Xπ−1(i),Mπ·Xn

)
)
i∈[n]

,

so that

π · (Xn,Yn) =

((
Xπ−1(i)

)
i∈[n]

,
(
f(ηπ−1(i), Xπ−1(i),Mπ·Xn

)i∈[n]

)) d
= (Xn,Yn) ,

where the equality in distribution is due to the fact that the ηi are i.i.d., Xn is exchangeable, and
MXn

is invariant under permutations.

Proof of Proposition 5. (i) is a special (finite) case of Lemma 7.2(i) in Kallenberg [4]. (ii) follows
from nearly identical arguments used in the proof of (i), omitted here for brevity.
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