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Abstract

Estimating and maximizing mutual information (MI) is core to many objectives
in machine learning, but tractably lower bounding MI in high dimensions is chal-
lenging. Recent work has introduced variational lower bounds with neural net-
works to attack this problem, but the tradeoffs and relationships between these
techniques remains unclear. Here, we present several results that begin to demys-
tify these techniques: we show that the bias-corrected gradient in MINE (Belghazi
et al.} 2018)) can be derived as an unbiased gradient of a new lower bound on MI,
present a stabler Jensen-Shannon-based training algorithm for the critic, provide
a new interpretation of contrastive predictive coding (CPC, [van den Oord et al.
(2018)) and prove this variant is a lower bound on MI, and demonstrate the batch-
size dependence of CPC. Empirically, we show that the effectiveness of these
bounds depends on properties of the data being modeled and the structure of the
critic, with no one bound uniformly dominating.

Introduction. Estimating the relationship between pairs of variables is a fundamental problem in
science and engineering. Quantifying the degree of the relationship requires a metric that captures
a notion of dependency. Here, we focus on mutual information (MI), denoted I(x;y), which is a
reparameterization-invariant measure of dependency:

Estimating MI is challenging when we have samples but not direct access to the underlying distri-
bution (Paninski, 2003} |Anonymous) [2019). A related problem appears in representation learning,
where we are given samples from one distribution, 2 ~ p(x) and are interested in learning a stochas-
tic mapping py (y|x) that captures as much information as possible about = subject to constraints on
the mapping (Bell & Sejnowskil 1995} |[Krause et al.,|2010; Hu et al., 2017;|Hjelm et al., 2018; |Alemi1
et al., 2017; McAllester, [2018)). Learning pg(y|x) requires computing gradients of an unbiased esti-
mate or lower bound on MI so that we can increase I (x;y), but may not require directly estimating
MI. Unfortunately, even given a tractable pg(y|z), directly estimating MI is intractable due to the
p(y) term. While many parametric and non-parametric (Nemenman et al., |2004; [Kraskov et al.,
2004) techniques have been proposed to address the MI estimation and maximization problems, few
of them scale up to the dataset size and dimensionality encountered in modern machine learning
problems.

To overcome these scaling difficulties, recent work combines variational bounds (Donsker & Varad-
hanl, [1983]; [Barber & Agakov, 2003} Nguyen et al., [2010) with deep learning (Alemi et al., 2016}
2017; [van den Oord et al., 2018} Hjelm et al., 2018} Belghazi et al., 2018). These papers present
differentiable and tractable mechanisms for estimating mutual information by introducing a neural-

network critic that estimates a conditional distribution p(y|z), p(z|y) or a density ratio pI(DSz%) .

While these bounds have been useful for MI estimation and representation learning, their properties
and tradeoffs are not well understood. Here we present several new results that begin to demys-
tify these bounds and their relationships. In Table [I} we summarize several estimators and their
properties.

Third workshop on Bayesian Deep Learning (NeurIPS 2018), Montréal, Canada.



Lower Bound L | VL | LBS | Var. | Norm
Iga Barber & Agakov|(2003) X |V v/ v/ X
Ipy Donsker & Varadhan|(1983) | X | X - - -
Inwy  Nguyen et al.[(2010) v |/ v X v
IMINE Belghazi et al. (201 8) X v v X v
Icpc van den Oord et al.[(2018)) v |/ X v X
Iis Ours |V v X v
Iep Ours v |/ v X v
Itcpe Ours I/ X v X

Table 1: Characterization of mutual information lower bounds. Estimators can have a tractable (v')
or intractable (X) objective (L), tractable (v) or intractable (X) gradients (V L), be dependent (X)
or independent (v') of batch size (L BS), have high (X) or low (v') variance (Var.), and requires a
normalized (X) vs unnormalized (v') critic (Norm.). See Table [2| for the objectives and parameters.

Data processing inequality. We can combine any estimator of MI with an initial preprocessing
step to reduce the dimensionality of the data. This allows us to turn a complex high-dimensional
estimation problem into a more tractable lower-dimensional problem. By data processing inequality,
this is still a lower bound on MI:

I(zyy) > I(r(z); s(y))- (1)

We can jointly maximize the processing functions r and s alongside paramters of our model or MI
estimator to form a tighter bound on 1 (x; ).

New bound explains bias-corrected gradient in MINE. In Appendix [B] we show how to derive
several existing and new bounds in a unified framework. In particular, we derive a new lower bound
on MI that depends on a learned critic f(z,y) and baseline a(y) > 0:

a(y)

Unlike Ipy (the [Donsker & Varadhan (1983) lower bound), we can compute unbiased gradient
estimates of this bound with respect to a(y), f, and encoder parameters p(y|x) jointly. This
bound holds for any choice of @ > 0. Choosing a to be the scalar moving average estimate of
Ep(2)p(y) [l0g f(z,y)] gives an objective whose gradients exactly match the bias-corrected gradients
used in [yng (Belghazi et al.| |2018). However, the optimal a depends on y, thus simply taking the
moving average estimate may be insufficient. Alternatively, choosing a to be the fixed constant e,
yields exactly Ixwy from Nguyen et al.|(2010) (also known as MINE- f from Belghazi et al.|(2018)).

I(iﬂ, y) Z IEB(Z'v Y; fa a) = Ep(;,y) [log f(xa y)} - IEp(y) + 1Og(a(y)) -1 5 (2)

Reinterpreting CPC. While CPC focuses on the use of an unnormalized critic, we can also leverage
learned or known normalized conditional densities e(y|x) to build contrastive lower bounds on MI:

K
1 e(yilzi)
I > Itcpe £ Epre(y) l ZEywp(yllri) [log T <K . A1 &)
K i=1 %Zj:l 6(y1|(L'])

where pX (z) is the distribution corresponding to drawing a minibatch of K independent samples
from the data density, p(y;|z;) is the conditional distribution (that only needs to be sampled, not
evaluated), and e(y;|z;) is a variational distribution that approximates p(y;|z;) (see Appendix [D|for
derivation). This objective is a special case of Icpc, where f(x;,y,) = e(y,|x;) is a normalized
density. Maximizing Itcpc in terms of e gives e*(y|x) = p(y|x). In the case that p(y|z) is known
(for example in representation learning where pg(y|x) is a stochastic mapping from data to latents),
we can simply use that for e(y|z) to recover an estimate of MI without an additional critic! Thus we
can think of the critic in CPC in two ways: (1) learning an encoder with an optimum of p(y|z), or

(2) learning a density ratio with an optimum of % (as presented in van den Oord et al.|(2018)).

A bias-variance tradeoff in MI estimation. In Fig. (1| we evaluate several MI estimators on the toy
correlated Gaussian task from Belghazi et al.| (2018) where (x, y) are drawn from a 20-d Gaussian
distribution with correlation p (see Appendix [E] for details). We find that all the non-contrastive
unnormalized critic estimates of MI exhibit high variance, and are challenging to tune for even this
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Figure 1: Performance of bounds at estimating mutual information. The dataset p(z,y; p) is a
correlated Gaussian with the correlation p stepping over time. Critics are trained to maximize each
lower bound on MI, and the objective (light) and smoothed objective (dark) are plotted for each
technique and critic type. The non-contrastive bounds have higher variance than CPC, and Ijs
outperforms Inwj at higher MIs. Icpc and Itcpe are poor estimators of MI with the small training
batch size of 128, but when evaluating with a larger batch size (10000) the MI estimators are on par
or better than the non-contrastive approaches. Using a joint critic (orange) outperforms a separable
critic (blue) for I;s and Inwj, but has no effect on Icpc and Itcpc. Note that TCPC has no learnable
parameters and uses the true p(y|z; p) for the critic.

simple toy task. However, contrastive approaches based on CPC are low variance, but have estimates
that saturate at log(batch size). None of the estimators we have tried exhibit good estimates of MI
at high rates and low variance, supporting the theoretical findings of /Anonymous|(2019).

Stabilizing critics with JS training. Updating the critic f using gradients of Iyw; can be unstable
due to the exp of the critic logits in the Ixwj objective. Instead, one can update the critic f to
maximize a lower bound on the Jensen-Shannon (JS) divergence, and use the density ratio estimate
from the critic to plug into the lower bound on the KL divergence given by Inwjy. We call this
approach Ijs as we update the critic using the JS, but still evaluate using MI. This approach is
similar to |Poole et al.| (2016); Mescheder et al.| (2017) where the JS critic is used in a Monte-Carlo
approximation of the f-divergence, but here we plug into Iywjy to ensure we compute a lower bound
(see Appendix [C|for details).

Efficiency-accuracy tradeoffs for critic architectures. One major difference between CPC and
MINE is the structure of the critic architecture. CPC uses a separable critic f(x,y) = h(z)Tg(y)
which allows one to do 2N forward passes through a neural network for a batch size of N. How-
ever, [Belghazi et al. (2018)) use a joint critic, where x, y are concatenated and fed as input to one
network, thus requiring N2 forward passes. For the toy problem, we found that separable critics
(blue) increased the variance of the estimator and downwardly biased the estimate of MI compared
to joint critics (blue) when using Inwy or Iys. However, using joint critics on large datasets is in-
tractable. Future work should look into designing better critic architectures that share the efficiency
of separable critics approach without sacrificing the increased expressivity of the joint critics.

. I Batch size dependence of CPC. As noted in|van den Oord et al.
-~ (2018), the mutual information estimate Icpc 1s upper bounded
by log(batch size). However, we can learn the critic with a small
batch size and evaluate the critic with a larger batch size. Given

Mutual Information
-
|
T

31 " L that the optimal critic for the CPC loss does not depend on the
24 = - batch size, we can expect larger batch sizes to improve our MI
1 F estimate (van den Oord et al., 2018). In Fig. E], the estimate of
T L s h o MI improves with batch size. We study this behavior further

2222 Bzat(i Sizz: 222 in Fig. [2] by fixing a dataset of a particular mutual information

(adjusting the correlation of the multivariate Gaussian from the
toy problem), and computing Icpc for different batch sizes using
the optimal critic. While we need an enormous batch size to
.- approximate MI (exponential in the true MI), the accuracy of
critic f(x,y; p) = p(ylz; p). the learned critic at small batch sizes points to gradients of this
bound still being useful in learning representations that maximize information. Future work should
address how accurate the gradients of Icpc with small batch sizes are for learning.

Figure 2: Scaling of Icpc with
batch size given the optimal



Open problems in MI estimation. None of the approaches we considered here are capable of
providing good estimates of MI with practical batch sizes. Future work should identify whether
such estimators are impossible (Anonymous, [2019), or whether certain distributional assumptions
or neural network inductive biases can be leveraged to build tractable estimators. Another question
is whether estimating gradients of MI is easier than estimating MI itself? Maximizing g, is fea-
sible even though we do not have access to the constant data entropy. If we do not care about MI
estimation and only care about MI maximization are there better approaches?

Another open question is whether mutual information is a useful objective for representation learn-
ing. Recent work from Hjelm et al.| (2018) propose to optimize for the JS from the joint to factorial
distribution instead of the KL. While deviating from mutual information maximization loses a num-
ber of connections to information theory, it may provide other mechanisms for learning features that
are useful for downstream tasks. In future work, we will evaluate these estimators on larger-scale
representation learning tasks to address these questions.
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A Objectives

MI Bound | Parameters Objective
Iga q(zly), tractable decoder Ep(w v llog q(z]y) — log p(x)]
Ipy ( ) critic p(w y) [IOg f(.]? Z/)] IOg ( p(z)p(y) [f(‘r y)])
INWJ ('T y) ]Ep(w,y) [logf € y p(z )p(y) f(x y)]
IMINE f(z,y), EMA(log f) Ipy for evaluatlon Iep ( f,EMA(log f)) for gradient
f(yi,zi)
Icec fz,y) Eps (@) |:K i log ISR, fran)
Iig f(z,y) Inw; for evaluation, f-GAN JS for gradient
Ep (o) [f (2,3
Ien f(@.y). aly) > Ep (o, 108 £(2,9)] — Epgy) 22256520 4 log(ay)) — 1]
Itcpe e(y|x), tractable encocder | Icpc with f(z,y) = e(y|x)

Table 2: Parameters and objectives for mutual information estimators.

B Deriving the energy-based bounds

Here we present a new derivation of the lower bounds in Barber & Agakov| (2003); [Donsker &
Varadhan| (1983)); Nguyen et al.|(2010); |Belghazi et al.|(2018) and describe the new objective whose
gradient is the bias-corrected radient used in MINE [Belghazi et al.| (2018).

A commonly used bound due to Barber & Agakov|(2003) follows from the inequality

0 < Eyy [KL(p(z[y)lla(2|y))] = Ep(ay) log p(z]y) —logq(z(y)],

which holds with equality when ¢(z|y) = p(x|y). With this, we arrive at the bound by Barber &
Agakov|(2003)):

p(zly)
p(x)

Unfortunately, evaluating this objective is intractable as it requires being able to compute the data
entropy via the density p(x). However, we can compute gradients of this objective with respect to
the encoder p(y|x) and variational decoder ¢(x|y) and thus we can use this objective when we are
learning an encoder p(y|x) to maximize mutual information as in|Alemi et al|(2017).

zmw&w{m }z@wm%mmmmm. @

To derive bounds that can be tractably evaluated, we will turn towards an energy-based view of the
variational lower bound. Suppose we can specify ¢(z|y) up to a normalizing constant, choosing a
parameterization of the form:

p(x)

q(zly) = %f(z,y)



for which
25) = [ dopla)(2.9) = By [f (o,

Plugging this into equation 4] gives:

q(zly)

p(x)

The challenge with this bound is that unlike Eq. ] computing unbiased gradient estimates is non-
trivial. Naturally, we would like to move the log term inside the expectation, however, this produces
a bound in the wrong direction. Fortunately, we can use a well-known upper bound on log expres-
sions. By the concavity of log, we have log(z) < Z + log(a) — 1 for all z,a > 0. As a result, we

have that - [f( )]
log Ep(a) [f (2, 9)] < “(iy)”

where the variational parameter a(y) can depend on y and the bound is tight when a(y) =
E, (2 [f(z,y)]. To tighten, the bound, we would minimize the bound with respect to a(y). Putting
this together with Eq.[5] we get

I(2,y) 2 Ep(sy) log f(z]y)] = Epy) [l0g Epa) [£ (2, 9)]]
Z Ep(m7y) [10g f(l’, y)} - EP(U) W + 1Og(a(y)) -1 ’ (6)

which we can compute unbiased gradient estimates of, which would allow us to maximize the bound
with respect to a(y), f, and model parameters jointly (conveniently, all of the optimization is in the
same direction). To implement this, we can learn a parameterized function a(y) to jointly maximize
the lower bound.

Note that Eq.[5]is an upper bound on the MINE bound (Belghazi et al., 2018)

Ep(z,y) log f(z,y)] — Ep(y) [IOg Ep) [f(z, y)H > Ep(a,y) [log f(z,y)] = 10g Epa)pey) [f (2, 9)]
where log f(x,y) = Ty in the notation of Belghazi et al.| (2018)).

I(X;Y) 2 Epay) {log ] = Epzy) [log f(z,y)] — Epy) [long(z) [f(xvy)u 2 Ispt (5)

+log(a(y)) — 1

Applying a similar log inequality yields a lower bound on MINE

Epa) [f (@,
Ep(a.y) [l0g f(2,9)] 108 Bp(aypy) [f (2, 9)] 2 Ep(ay) [l0g f (2, 4)]=Ep(y) [W

+ log(a) — 1] .
This bound holds for any choice of @ > 0, so choosing a to be a moving average estimate of
E,(2)p(y) 10g f(2,y)] is valid and results in precisely the same update as proposed in (Belghazi

et al.l 2018)) as the bias corrected optimization procedure for MINE. Alternatively, choosing a = e,
yields

IE;to(at:,y) [1Og f(l‘7 y)} - 1Og Ep(a:)p(y) [f(l‘, y)] > Ep(m,y) UOg f(xv y)] - IEp(y) |: () e

which is the Inwj/MINE-f bound.

Exo ft20]),

C Deriving I

Given that optimizing can be unstable, we can instead optimize the critic using the lower bound
on Jensen-Shannon divergence as in GANs, and use the density ratio estimate from the JS critic to
construct a critic for the KL lower bound.

The optimal critic for KL is given by (Nowozin et al., 2016)):

p(z)
T (z) =1+ log —=.
@) q(x)
If we use the f-GAN formulation for the JS divergence, then we can read out the density ratio from
the real-valued logits V' (z):



In |Poole et al.|(2016); Mescheder et al|(2017), they plug in this estimate of the density ratio into
a Monte-Carlo approximation of the f-divergence. However, this is no longer a bound on the f-
divergence, it is just an approximation. Instead, we can construct a critic for the KL divergence and
use that to get a lower bound:

Trr(z)=1+V(x)
Plugging into Ixwy, (aka the KL lower bound from f-GAN we get):

KL(pllg) = Eonp [Trr(2)] — Bong [exp(Trr(z) = D] = 14 Eonp [V(2)] — Eang [exp(V (2))]

Note that if the log density ratio estimate V' (z) is exact, i.e. V(z) = %, then the last term,
E;q [exp(V (x))] will be one, and the first term is exactly K L(p||q).

In our case, p is p(z, y) and g is p(x)p(y), so this objective becomes

I(X;Y) > Ez,yNP(x’y) V(z,y)] — E:L’,yNP(cc)p(y) lexp(V(z,y))] -

D Iycpc derivation

Here we derive a lower bound on mutual information by splitting the the objective into minibaches
and lower bounding the objective on each minibatch. We believe these results represent a new
variational lower bound on MI, and unlike [van den Oord et al.|(2018) does not rely on any approxi-
mations.

D.1 Known encoder

First, we consider the representation learning case where the mapping from z to y, p(y|z) is known
and can be evaluated. Given minibatches of size K, we can write the mutual information as:

I(z;y) = Egy onp ZKL (ylzs)llp(y)) (7)

To establish a lower bound on the mutual information, we will lower bound each term in the expec-
tation by replacing the intractable marginal p(y) with an approximation based on samples from the
minibatch:

1 K
m(y; T1k) = 4 > plyle:) (8)
=1

To show this yields a lower bound, we rewrite Eq.[7]by multiplying by m(y; z1.x)/m(y; z1.x ) and
splitting into two terms:

K
ZKL (yla:)lp(y) Z (ylao) Im(y: 21:x)) + KL(m(y; 21:6) [p(y) )

As the second term, KL(m(y; x1.x)|lp(y)) is non-negative, dropping this term yields a tractable
lower bound on mutual information:

I(z;y) > Itcpc = Eyypenp l ZKL< y|z;) ||*Zp ylz;) >] (10)

D.2 Unknown encoder

If the encoder p(y|z) is not known or is intractable, we can introduce a variational encoder e(y|z) to
approximate it. This occurs when we are given samples (z,y) and are interested in MI estimation,
or when we are interested in learning a mapping from x to y that does not have a tractable density

p(yle).



We aim to show that if we use an e(y|z) # p(y|x) that the objective is strictly worse than Eqn.
ie.

p(ylzi) e(ylzi)
— dy p(y|z;) log —%——— /dyp yla;)log ————  (11)
Z/ K Zz 1p(y|$z Z KZZ 1e(ylzi)

The optimization problem is effectively over K densities, ey, ..., ex. We can compute the gradient
for one e; (ignoring the constraint that it integrates to 1):

ei(yle) > p(ylzi) p(ylz;)
VEJZ/CM sietos it s == [ EEns e [an Zans o
iplylz) p(ylz;)
- / IS e e 7/dy e (ylz;) (1

Thus e;(y|z;) = p(y|x;) is probably an extremum of the objective. Future work should more
rigorously address whether this unknown encoder case is provably a minimum, and thus whether
CPC is truly a lower bound on mutual information.

D.3 Relation to CPC

The minibatch objective is identical to CPC when using a tractable encoder and a Monte-Carlo
approximation of the KL! Lets consider sampling y; ~ p(y;|z;) for each element ¢ in the minibatch.

Then we have:
1 & e(yilz:)
L =22 Bupile) |08 T—r
K i=1 %Zj:l e(yilz;)
We know that drawing a single sample for the inner expectations will give us an unbiased estimate,
ie. if

N e(yila)
Lx = log ————1 (14)
; 38 elila;)

then E,, [LAK} =Lk.

Furthermore Eq. H is exactly the equation for CPC up to the constant log K with f(z;,v;) =
(yz‘x])

A xwyz)
L —logK = log — 2T Y (15)
Z ] 1f(x]7yz)

Here we know that the optimal critic is f*(z;,y;) = p(y;|x;), which only depends on the condi-
tional, and does not depend on the marginal p(y).

E Experimental details

Dataset. For each dimension, we sampled (z;,y;) from a correlated Gaussian with mean 0 and
correlation of p. We used a dimensionality of 20, i.e. * € R?,y € R?°. Given the correlation
coefficient p, and dimensionality d = 20, we can compute the true mutual information: I(z,y) =
—g log(1 — p?). For Fig.|1} we increase p over time to show how the estimator behavior depends on
the true mutual informaiton.

Architectures. We experimented with two forms of architecture: separable and joint. Separable
architectures independently mapped x and y to an embedding space and then took the inner product,
ie. f(z,y) = h(x)Tg(y) as in (van den Oord et al., 2018). Joint critics concatenate each x, y pair
before feeding it into the network, i.e. f(x,y) = h([z,y]) as in (Belghazi et al.| [2018). In practice,
separable critics are much more efficient as we only have to perform 2N forward passes through



neural networks for a batch size of N vs. N? for joint critics. All networks were fully-connected
networks with ReLU activations.

Optimization. All lower bounds were optimized with a batch size of 64 and Adam. We experi-
mented with other optimizers and gradient clipping but found that it hurt results on the toy problem.

I(X;Y)>1log K — Lk
Lk >0
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