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Abstract

Variational Auto-Encoders (VAEs) are capable of learning latent representations
for high dimensional data. However, due to the i.i.d. assumption, VAEs only opti-
mize the singleton variational distributions and fail to account for the correlations
between data points, which might be crucial for learning latent representations
from dataset where a priori we know correlations exist. We propose correlated
VAEs that can take the correlation structure into consideration when learning latent
representations with VAEs. Experimental result on learning matchings on a public
benchmark movie rating dataset shows the effectiveness of the proposed method
over several baseline algorithms.

1 Introduction

Variational Auto-Encoders (VAEs) (Kingma and Welling, 2013; Rezende et al., 2014) are a family
of powerful deep generative models that learns stochastic latent embeddings for input data. By
applying variational inference on deep generative models, VAEs are able to successfully identify the
latent structures of the data and learn latent distributions that can potentially extract more compact
information which are not easily and directly obtained from the original data.

VAEs assume each data point is i.i.d. generated, which means we do not consider any correlations
between the data points. This is a reasonable assumption under many settings. However, sometimes
we known a priori that data points are structured and correlated (e.g. networked data with useful
side-information (Shi et al., 2014)). For example, in a recommender system, it is reasonable to assume
a user’s social network can impact what items they would interact with. When we fit a regular VAE
on user’s click data as in Liang et al. (2018), we will lose such information. It is more reasonable to
assume the latent representation for each user is also correlated following the same network structure.

In this paper, we extend the regular VAEs by encouraging the latent representations to take the
correlation structure into consideration. Instead of only learning singleton latent space mappings, we
also learn pairwise mappings to capture the correlations from the graph structure. More specifically,
we define the prior distribution of the latent variables according to the pairwise correlations. To make
the computation tractable, we modify the standard VAE objective to contain a KL-divergence term
with both edge and non-edge information from the graph. The experiment results show that our
method can outperform regular VAE and some other baseline methods on matching dual user pairs
using the movie rating records on a movie recommendation dataset.

2 Correlated VAEs

2.1 Variational Auto-Encodings

Assume that we have input data x = {x1, . . . ,xn} ⊆ RD. VAEs assume that the data point
xi is generated i.i.d. from the following process: First, generate the latent embeddings z =
{z1, . . . ,zn} ⊆ Rd (usually d � D) by drawing i.i.d. zi ∼ p0(zi) from the prior distribution p0
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(parameter-free, usually a standard Gaussian distribution) for each i ∈ {1, . . . , n}. Then generate
the data points xi ∼ p(xi|zi;θ) from the model conditional distribution p, for i ∈ {1, . . . , n}
independently. The joint likelihood of (z,x) is p(z,x;θ) =

n∏
i=1

p0(zi) ·
n∏

i=1

p(xi|zi;θ).

We are interested in optimizing θ to maximize the likelihood p(x;θ), which requires computing

the posterior distribution p(z|x;θ) =
n∏

i=1

p(zi|xi,θ). For most models, this is usually intractable.

VAEs sidestep the intractability and resort to variational inference by approximating this posterior

distribution as q(z|x;λ) =
n∏

i=1

q(zi|xi;λ) and maximize the evidence lower bound (ELBO):

L(λ,θ) = Eq(z|x;λ) [log p(x|z;θ)]− β · KL(q(z|x;λ)||p0(z))

=

n∑
i=1

(Eq(zi|xi;λ) [log p(xi|zi;θ)]− β · KL(q(zi|xi;λ)||p0(zi)))
(1)

Here β > 0 is a constant that we can control. When β = 1, ELBO is a lower bound of the
log-likelihood log p(x;θ) and maximizing this lower bound is equivalent to minimizing the KL
divergence between the variational distribution q(z|x;λ) and the true posterior p(z|x;θ). Recent
work (Higgins et al., 2017; Alemi et al., 2018) suggests that setting with β 6= 1 can lead to other
desirable behaviors for representation learning.

The KL-divergence term in the ELBO can be viewed as a regularization that pulls the variational
distribution q(z|x) towards the prior distribution p0(z). Since the approximation family q(z|x;λ)
factorizes over data points, the KL-divergence in the ELBO is simply a sum over the per-data-point
KL-divergence terms, which means that we do not consider any correlations of latent representation
between data points.

2.2 Inference with correlation

As motivated earlier, sometimes we know a priori there exists correlations between data points. If we
have access to such information, we can incorporate it into the generative process of VAEs, which we
term Correlated VAEs.

Formally, Assume that we have n data points x1, . . . ,xn. In addition, we know correlation structure
of these data points through an undirected graph G = (V,E), where V = {v1, ..., vn} is the set of
vertices corresponding to all data points (i.e., vi corresponds to xi) and (vi, vj) ∈ E if xi and xj

are correlated. Making use of the correlation information, we change the prior distribution p0 of
the latent variables z1, . . . ,zn to take the form of a distribution over (z1, . . . ,zn) ∈ Rd × . . .× Rd

whose marginal distribution on any two variables zi and zj satisfies

p(zi, zj) =

{
pp0(zi, zj) if(vi, vj) ∈ E
pn0 (zi, zj) if(vi, vj) 6∈ E.

(2)

Here pp0(·, ·) and pn0 (·, ·) are two parameter-free distributions that capture the correlated and uncorre-
lated relationships between each pair of variables. For example, we can set pp0 to have high density
when the two latent variables have closer value while set pn0 in the opposite way. This change will
help the model take the correlation information into consideration since we have a KL-divergence
regularization term in ELBO that will regularize the variational distribution towards the prior distribu-
tion. With the latent representation z sampled from this new prior p0(z), we assume the each data
point xi is again conditionally independently generated from z, similar to a regular VAE.

With this choice of prior, ideally it would make sense to use a fully joint q distribution to approximate
the joint posterior and optimize L(λ,θ) = Eq(z|x;λ) [log p(x|z;θ)] − β · KL(q(z|x;λ)||p0(z)).
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However, this is intractable. To address this issue, we relax the exact ELBO in the following way:

LG(λ,θ) =

n∑
i=1

Eq(zi|xi;λ) [log p(xi|zi;θ)]

− β ·
∑

(vi,vj)∈E

KL(q(zi, zj |xi,xj ;λ)||pp0(zi, zj))

− γ ·
∑

(vi,vj) 6∈E

KL(q(zi, zj |xi,xj ;λ)||pn0 (zi, zj)).

(3)

Here γ > 0 is a constant that controls the contribution from uncorrelated pair of nodes. We use a varia-
tional distribution that only considers singleton q(zi|xi;λ) and pairwise relations q(zi, zj |xi,xj ;λ).
As one example for such variational distribution, we can set the q(z|x) as a multivariate Gaussian
distribution where the marginal distribution of zi is a function of xi while the covariance Cov(zi, zj)
is a function of xi and xj . By applying this approximation, we only need to learn singleton and
pairwise parametric distributions. On the other hand, this approximation has the advantage over
regular VAE in that we take the pairwise correlations into consideration by directly learning the
correlations in the variational distribution q.

In most of the real-world data, the graph G is highly sparse. In this case, we can approximate the
non-edge KL-divergence (the last term in Equation (3)) by sampling edges from the complement
graph Ḡ = (V, Ē). This is akin to negative sampling commonly used in language modeling.

2.3 Related work

Shaw et al. (2011) incorporated graph structure to metric learning. The major difference with
correlated VAEs is that the metric learned from (Shaw et al., 2011) is inherently linear while
correlated VAEs is capable of capturing more complex non-linear relations in the feature space.

There has been some recent work on incorporating structures in VAEs. Johnson et al. (2016) proposed
structured VAEs which enable the prior to take a more complex form (e.g., a Gaussian mixture model,
or a hidden Markov model). Similarly, Ainsworth et al. (2018) proposed output-interpretable VAEs
which combine a structured VAE comprised of group-specific generators with a sparsity-inducing
prior. However, both structured VAEs and output-interpretable VAEs are designed to model the
structures between dimensions within each data point, while correlated VAEs considers structures
between data points.

Another related line of work is the recent advances in graph convolutional networks (Kipf and Welling,
2016; Hamilton et al., 2017). We leave the comparison with GCN for future work.

3 Experiments

In this simple experiment, we evaluate the correlated VAEs with a bipartite correlation graph. We use
the MovieLens 20M dataset (Harper and Konstan, 2016). This is a public movie rating dataset that
contains ≈ 138K users and ≈ 27K movies. We binarize the rating data and only consider whether a
user has watched a movie or not, i.e., the feature vector for each user is a binary bag-of-word vector.
For all the experiments, we did a stochastic train/test split over users with a 90/10 ratio.

Task. For each user ui, we randomly split the movies that this user has watched into two halves and
construct two synthetic users uAi and uBi . This creates a bipartite graph where we know the synthetic
users which were generated from the same real user should be more related than two random synthetic
users. The goal of the evaluation is that, when given the watch history of a synthetic user uAi from a
held-out set, we try to identify its dual user uBi . This can be potentially helpful with identifying close
neighbors when using matching to estimate causal effect, which is generally a difficult task especially
in high-dimensional feature space (Imbens and Rubin, 2015).

Method. We learn a correlated VAE from training synthetic user pairs. Since we know the correct
dual user matchings, we can build an undirected graph G = (V,E) to capture this correlation
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information. For each pair of synthetic users (uAi , u
B
i ), we have an edge (vAi , v

B
i ) ∈ E. For the edge

relation prior distribution pp0, we use:

pp0(zAi , z
B
i ) = N

(
µ = 02d,Σ =

(
1d τ · 1d

τ · 1d 1d

))
. (4)

Here 0� τ < 1 is a parameter that controls the correlation between the variables. Since the watch
history of uAi and uBi are correlated, we set τ to be close to 1, as we hope the corresponding latent
embeddings are close to each other. On the other hand, we use a standard Gaussian distribution for
the non-edge relation prior distribution pn0 since we do not expect the two variables to have some
correlations.

For the variational distribution q, we set both q(zAi ) and q(zBi ) as diagonal Gaussian distribution on
Rd and q(zAi , z

B
j ) as a Gaussian distribution such that its marginal on both zAi and zBj are diagonal

Gaussian distributions and the covariance matrix between zAi and zBj is also a diagonal matrix. This
approximation helps make the inference tractable and efficient while still take the correlation infor-
mation into considerations. For the observational model p(xi|zi), we use a multinomial likelihood
similar to Liang et al. (2018).

Baselines. We compare correlated VAEs with both regular and some variations of VAEs:

• VAE: Simply train on user’s watch history without using the correlation structure.
• VAEBI: On top of a regular VAE, we add a bi-directional transformation between the latent

embeddings zAi , zBi for each synthetic user pair (uAi , u
B
i ). More specifically, we learn a

bi-directional mapping of the mean and standard deviation between the diagonal normal
approximation q(zAi ) and q(zBi ).

• VAEEdgePrior: Learn a regular VAE on pairs of synthetic users with a correlated prior in
Equation (4), instead of standard Gaussian distributions. This is effectively setting γ in
Equation (3) to 0 and only learning the singleton parametric distributions q(zi|xi) (not
learning the pairwise distributions).

Evaluation. We train all the methods on all the synthetic user pairs from the training set. To
evaluate, we select a fixed number of N eval = 1000 pairs of synthetic user from the test sets. For each
synthetic user uAi (or uBi ), we find the ranking of uBi (or uAi ) among all candidates in the set of uBj
(or uAj ) in terms of the latent distribution distance to uAi (or uBi ). This latent distribution distance can
vary from methods to methods, as different methods provide different information to compute the
distance. For correlated VAEs, we use

dis(uAi , u
B
j ) = Eq(zA

i ,zB
j )

[∥∥zAi − zBj ∥∥2]
as the distance measure which will make use of the correlation between pairs of users. For the
baseline methods, since they do not compute the correlations between data points directly, we use the
variation of this distance, which is the squared L2-Wasserstein distance, to compute the distance:

dis(uAi , u
B
j ) = min

q′(zA
i )=q(zA

i ), q′(zB
j )=q(zB

j )
Eq′(zA

i ,zB
j )

[∥∥zAi − zBj ∥∥2] .
Results. We report normalized discounted cumulative gain (NDCG) (Järvelin and Kekäläinen,
2002), mean reciprocal rank (MRR), and mean rank in Table 1. The two numbers in each parenthesis
represent metrics for finding dual users of the uAi ’s among all uBj candidates and finding dual users
of the uBi ’s among all uAj candaidates, respectively. We can see that correlated VAEs successfully
outperform baseline methods. Notably, correlated VAE achieves a consistently smaller mean rank,
which indicates that it is more stable as mean rank is sensitive to bad ranking.

4 Conclusion and future work

We introduce correlated VAEs to account for correlation between data points. It extends the regular
VAEs by adding pairwise variational distribution approximations. This method successfully outper-
forms some other baseline methods based on VAEs on a matching task on a public movie-rating
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Table 1: Metrics for dual user matching

Method NDCG MRR Mean rank

VAE (0.617, 0.613) (0.519, 0.515) (19.5, 20.3)
VAEBI (0.746, 0.752) (0.673, 0.681) (5.76, 6.25)
VAEEdgePrior (0.721, 0.721) (0.643, 0.643) (7.13, 6.82)
Correlated VAE (0.761, 0.768) (0.691, 0.701) (5.77, 5.53)

dataset. For future work, we will perform more thorough experiments on a more general type of
undirected graphs, as well as with related baselines from the literature.
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