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Abstract

We propose a capsule restricted Boltzmann machine by replacing individual hidden
variables with encapsulated groups of hidden variables. Our preliminary experi-
ments show that capsule activities can be dynamically determined in context, and
these activity spectra exhibit between-class patterns and within class variations.

1 Introduction

The development of deep neural network models is powered by the theory of distributed representation
[1] which has achieved mega successes in natural language processing (e.g. word embedding [2])
and computer vision (convolutional nets [3]). However, its limited capacity of supporting complex
symbolic manipulations puzzles and reminds people whether revised distributed representational
or alternative representational theories exist [4, 5]. Recently, the emergement of capsule nets for
classification spurred new discussions and explorations on the next-generation deep learning systems
[6, 7]. Meanwhile, generative models have evolved from restricted Boltzmann machine (RBM)
based models, such as Helmholtz machines [8] and deep belief nets [9], to variational auto-encoders
(VAEs) [10] and generative adversarial networks (GANs) [11] with some successes in image and
video generation. Sitting on the shoulders of these accomplishments, we are wondering whether the
concept of capsules can be adopted (but unnecessarily identical) to generative models? While there
might be many different ways to pursue it, as the first step, we propose in this paper a capsule RBM
model that has generative capsules in its hidden layer. In the rest of this paper, we present this model
and show some preliminary but interesting results. Certainly, further investigation would still be
desirable.

2 Method

Based on theories of exp-RBMs [12, 13, 14] and discriminative capsule nets [6, 7], we propose
capsule RBM (or cap-RBM) replacing hidden variables with capsules. We use x to represent the
visible vector. The k-th capsule in the hidden layer includes hk which hosts multiple hidden random
variables following any distribution from the exponential family, and zk a binary random variable
indicating whether this capsule is active. An example of such network is displayed in Figure 1.

We assume visible vector x has M units, the hidden layer has K capsules (each contains J units and
one switch variable). For notational simplicity, we write h = {h1, · · · ,hK}. Following the steps of
defining exp-RBMs, first of all, the base distributions of cap-RBM can be defined in natural form as

p(x) =

M∏
m=1

ea
T
msm+log f(xm)−A(am), p(h) =

K∏
k=1

J∏
j=1

eb
T
k,jtk,j+log g(hk,j)−B(bk,j),
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Figure 1: An example of cap-RBM. a contains the bias parameters on the visible units. bk includes
bias parameters on hk. ck denotes the bias parameter on variable zk. The capsules (hk and zk,
k = 1, · · · ,K) interact with the visible vector through matricesWk and Ω (not shown in figure).

p(z) =

K∏
k=1

eckzk−Ck(zk), (1)

where p(x) and p(h) are distributions from the exponential class, and p(z) is Bernoulli distributed.
am = [a

(1)
m , · · · , a(R)

m ] and bk,j = [b
(1)
k,j , · · · , b

(U)
k,j ] are respectively the natural parameters of xm and

hk,j , sm and tk,j are respectively their sufficient statistics, A(am) and B(bk,j) are corresponding
log-partition functions, and f(xm) and g(hk,j) are base measures. Similar notations apply to p(z).

Second, the joint distribution has a similar form as regular RBM: p(x,h, z) = 1
Z e
−E(x,h,z), where

Z is the partition function, and the energy function can be defined as

E(x,h, z) =−
M∏
m=1

(
aT
msm + log f(xm)

)
−

K∏
k=1

J∏
j=1

(
bTk,jtk,j + log g(hk,j)

)
− cTz

−
K∑
k=1

zk(xTWkhk)− xTΩz, (2)

where the first three terms are bias terms, and the last two terms define interactions between observa-
tions and capsules. The interaction term xTΩz could be optional in the model.

After that, fortunately we are able to obtain the conditionals in decomposable forms, as below.

p(x|h, z) =

M∏
m=1

p
(
xm|η(âm)

)
, â(r)m = a(r)m + δ(r = 1)

( K∑
k=1

zk(Wk)m,:hk + Ωm,:z
)

p(h|x, z) =

K∏
k=1

J∏
j=1

p
(
hk,j |η(b̂k,j)

)
, b̂

(u)
k,j = b

(u)
k,j + δ(u = 1)

(
zk(WT

k )j,:x
)

p(z|x,h) =

K∏
k=1

BE
(
zk|η(ĉk)

)
, ĉk = ck + xTWkhk + (ΩT)k,:x,

(3)

(4)

(5)

where, r ∈ {1, · · · , R}, u ∈ {1, · · · , U}, without loss of generality we assume the first statistics for
xm and hk,j are respectively xm and hk,j , function η(·) maps the natural parameters to the standard
forms, and δ(·) is a Kronecker delta function. See [13] for transformation tables for exponential
family distributions in natural and standard forms.

Variable zk governs whether the k-th capsule can interact with the visible variables, that is, only when
zk = 1, the k-th capsule has an impact on x. Thus, the model dynamically decides which capsules
are active depending on the context. The conditional distribution of x is determined by its interactions
with the active capsules and the switch variable. The conditional distribution of hk depends on its
interaction with x. In turn, the value of the switch variable z depends on all the other variables.
Specifically, this model has the following metrics. (1) An observation x will only activate a portion of
capsules, some of which may be ubiquitous while some may be specific. (2) This leads to block-wise
structured representation of an observation in the hidden space. (3) Through examining the activity
of dozens of capsules, indicated by z, it offers a better interpretation compared to investigating the
meanings of hundreds or thousands of individual hidden variables in other generative models.
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The model parameters are denoted by θ = {a, b, c,W ,Ω}, where we simply write b =
{b1, · · · , bK} and W = {W1, · · · ,WK}. Similar to exp-RBM, the gradients w.r.t. these model
parameters can be computed in the form:

∆θ =
1

N

N∑
n=1

(
Ep(h,z|xn)

[∂E(xn,h, z)

∂θ

]
− Ep(x,h,z)

[∂E(x,h, z)

∂θ

])
. (6)

The derivatives of the energy function w.r.t. the model parameters can be computed as below:
∂E(x,h, z)

∂a
(r)
m

= −s(r)m ,
∂E(x,h, z)

∂b
(u)
k,j

= −t(u)k,j ,
∂E(x,h, z)

∂c
= −z,

∂E(x,h, z)

∂Wk
= −zkxhT

k ,
∂E(x,h, z)

∂Ω
= −xzT. (7)

In Equation (6), sampling from the joint distribution can be realized by Gibbs sampling with
the conditional distributions; the data-dependent term can be estimated by mean-field variational
approximation with the conditional distributions over h and z while fixing xn.

A range of modifications could be done for this model. For instance, a generative convolutional
mechanism could be integrated in the visible layer, which may be particularly useful for complex
inputs, e.g. large images or signals. More hidden capsule layers could be naturally added to form
capsule deep generative models (cap-DGMs). These models could be either undirected or directed.

3 Experiments

We have preliminarily investigated the performance of cap-RBM on MNIST data (http://yann.
lecun.com/exdb/mnist, see Figure 2a for some examples from the data). We let both base
distributions of x and hk be Bernoulli, and set K=40, J=16, initial learning rate to 0.02 (gradually
decreased), batch size to 100, and number of epochs to 20. We tracked the reconstruction error of
training and test samples, which reduced quickly along model learning (see Figure 2b). Figure 2c
shows 100 images generated by Gibbs sampling with the learned model. We obtained the capsule
activities (values of z) of the actual images as in Figure 2a using mean-field approximation, and
displayed them as spectra in Figure 2d. Interestingly, class-wise patterns (such as patterns in classes
0 and 1) and within-class variations can be observed from the spectra. Furthermore, we find that
digits sharing similar parts tend to have partially similar patterns (such as digits 1, 4, 7, and 9 all have
vertical strokes). By contrast, a Bernoulli-Bernoulli RBM with 640 hidden variables was run, but its
hidden states couldn’t clearly exhibit such patterns (results not shown due to page limit).

(a) Actual Images.
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(b) Reconstruction Errors. (c) Generated Images.
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(d) Capsule Activity.

Figure 2: Performance of cap-RBM on MNIST.

We also explored cap-RBM on the Fashion-MNIST data [15] (see Figure 3a for some examples from
its test set). We let both base distributions of x and hk be Gaussian, and set K=20, J=16, and the
initial learning rate to 0.005. Figure 3b shows the reconstruction errors of training samples and test
samples as the learning proceeded. Figure 3c gives some images generated from the model after
training. Figure 3d displays the capsule activities corresponding to actual test images in Figure 3(a).
Again, one can see that the capsule activity spectra exhibit class-specific patterns (e.g. T-shirt/top
(row 1) versus Trouser (row 2)). Close classes tend to share similar spectral patterns (e.g. Sandal
(row 6) and Sneaker (row 8)). Furthermore, within each class, variations can be observed among
capsule activity spectra of samples.
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(b) Reconstruction Errors. (c) Generated Images.
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Figure 3: Performance of cap-RBM on FASHION-MNIST.

4 Conclusion

In this study, we explored using capsules in generative models. Our preliminary results, as a proof of
concept, corroborate that our cap-RBM model is able to dynamically activate capsules depending on
the context, and the activity of capsules offers a new way to interpret representations of observations
in hidden space. Our next task is to test the model on more complicated data in comparison with
benchmarks. Our method will be extended to deep generative models. The reasonability of our model
from the cognitive science perspective is currently under discussion.
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