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Abstract

Uncertainty estimation in deep neural networks is essential for designing reliable
and robust Al systems. Applications such as video surveillance for identifying
suspicious activities are designed with deep neural networks (DNNs), but DNNs
do not provide uncertainty estimates. Capturing reliable uncertainty estimates in
safety and security critical applications will help to establish trust in the Al system.
Our contribution is to apply Bayesian deep learning framework to visual activity
recognition application and quantify model uncertainty along with principled
confidence. We utilize the stochastic variational inference technique while training
the Bayesian DNNs to infer the approximate posterior distribution around model
parameters and perform Monte Carlo sampling on the posterior of model parameters
to obtain the predictive distribution. We show that the Bayesian inference applied to
DNNs provide reliable confidence measures for visual activity recognition task as
compared to conventional DNNs. We also show that our method improves the visual
activity recognition precision-recall AUC by 6.2% compared to non-Bayesian
baseline. We evaluate our models on Moments-In-Time (MiT) activity recognition
dataset by selecting a subset of in- and out-of-distribution video samples.

1 Introduction

Activity recognition is an active area of research with multiple approaches depending on the applica-
tion domain and the types of sensors [[1, 2 3]]. In recent years, the DNN models applied to the visual
activity recognition task outperform the earlier methods based on Gaussian Mixture Models and Hid-
den Markov Models [4} 5] using handcrafted features. The availability of large datasets [6 [7, |8] for
visual analysis tasks has enabled the use of DNNs for activity recognition task. Vision-based activity
recognition methods typically apply a combination of spatiotemporal features to classify the activities.
Single frame based activity recognition methods usually apply DNN models trained on ImageNet
dataset [9] to extract the spatial features. The temporal dynamics for activity recognition is typically
modeled either by using a separate temporal sequence modeling such as variants of RNNs [10, [11]]
or by applying 3D ConvNets [12], which extend 2D ConvNets to the temporal dimension. In this
work, we focus on the visual activity recognition applied to the trimmed video samples using the 3D
ConvNet (C3D) architecture [[13]]

Probabilistic Bayesian models provide principled ways to gain insight about data and capture reliable
uncertainty estimates in predictions. Bayesian deep learning has allowed bridging DNNs and
probabilistic Bayesian theory to leverage the strengths of both methodologies [[14,|15]. Conventional
DNNs are trained to obtain the maximum likelihood estimates and they tend to disregard uncertainty
around the model parameters that eventually leads to predictive uncertainty. DNNs may fail in the
case of noisy or out-of-distribution data, leading to overconfident decisions that could be erroneous
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as SoftMax probability does not capture overall model confidence. Instead, it represents relative
probability that an input is from a particular class compared to the other classes.

Bayesian deep learning framework with Monte Carlo (MC) dropout technique has been used in visual
scene understanding applications including camera relocalization [[16], semantic segmentation [17]],
and depth regression [18]]. In this work, we propose a Bayesian confidence measure applied to visual
activity recognition task using the variational inference technique. To the best of our knowledge, this
is the first research effort that applies Bayesian deep learning framework with variational inference
for activity recognition task to capture reliable uncertainty measures.

2 Background

Bayesian neural networks (BNNs) offer a probabilistic interpretation of deep learning models by
placing distributions over the model parameters. Bayesian inference can be applied to estimate the
predictive distribution by propagating over the model likelihood and marginalizing over the learned
posterior parameter distribution. BNNs also help in regularization by introducing distribution over
network weights, capturing the posterior uncertainty around the neural network parameters. This
allows transferring inherent DNN uncertainty from the parameter space to the predictive uncertainty
of the unseen data.

Given training dataset D = {z,y} with inputs © = x1,...,2y and their corresponding outputs
Yy = y1, ..., YN, in parametric Bayesian settings we would like to infer a distribution over weights w
as a function y = f,, () that represents structure of the DNN model. With the posterior for model
parameters inferred during Bayesian neural network training, we can predict the output for a new data
point by propagating over the model likelihood p(y|z, w) while drawing samples from the learned
parameter posterior p(w|D). Equationbelow shows predictive distribution of output y* given new
input z*:

p@WxﬁD>=/¢@Wxﬁwp@wDMw ()

In Bayesian neural networks, some of the techniques to achieve tractable inference include: (i)
Markov Chain Monte Carlo (MCMC) sampling based probabilistic inference [[14}|19] (ii) Variational
inference techniques to infer the tractable approximate posterior distribution around model parameters
[20, 21} 22] and (iii) Monte Carlo (MC) dropout approximate inference [23]]. In our work, we use
variational inference approach to infer the approximate posterior distribution around the model
parameters.

Variational inference [24] is an active area of research in Bayesian deep learning, which uses gradient
based optimization. This technique approximates complex probability distribution p(w|D) with a
simpler distribution gg(w), parameterized by variational parameters  while minimizing the Kullback-
Leibler (KL) divergence. Minimizing the KL divergence is equivalent to maximizing the log evidence
lower bound [25) 23]].

Loz i= [ an(w)logply|,w) dw - KLjgo(w) || p(w) @

We evaluate the model uncertainty using Bayesian active learning by disagreement (BALD) [26] for
the visual activity recognition task. BALD quantifies mutual information between parameter posterior
distribution and predictive distribution, which captures model uncertainty, as shown in Equation 3]

BALD := H(y" |z*,D) — Eg, () [H(y" | ", w)] (3)
where, H (y* | z*, D) is the predictive entropy given by:
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and p;,, is predictive mean probability of i class from 7' Monte Carlo samples.
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Figure 1: Vision-based activity recognition using ResNet101 C3D architecture. Bayesian variational
inference is applied to the final three fully connected layers. Monte Carlo sampling on the posterior
of model parameters provides the predictive distribution.

3 Bayesian DNN architecture

We use ResNet-101 C3D architecture and replace the final layer with three fully connected
variational layers followed by categorical distribution, as shown in Figure[T} The weights and bias
parameters in the fully connected variational layers are modeled through mean-field normal distribu-
tion, and the network is trained using Bayesian variational inference based on KL divergence [211 22].
We use Flipout [27], which is an efficient method that decorrelates the gradients within a mini-batch
by implicitly sampling pseudo-independent weight perturbations for each input. We perform 40
stochastic forward passes on the final three fully connected variational layers with Monte Carlo
sampling on the weight and bias posterior distributions, while the remaining layers of the network are
considered to be deterministic. We compare the proposed architecture with MC dropout approximate
Bayesian inference [23] method. We analyze the confidence measure and model uncertainty estimates
for true (correct) and false (incorrect) predictions obtained from Bayesian DNN models.

For the comparison with the non-Bayesian baseline, we maintain the same model depth as the
Bayesian DNN model and use three deterministic fully connected final layers for the non-Bayesian
DNN model. The dropout layer is used after every fully connected layer to avoid over-fitting of
the model. In the rest of the document, we refer the non-Bayesian DNN model as simply the DNN
model.

4 Results

We evaluate our models on the MiT video activity recognition dataset [[7]] and train our model on a
subset of 54 classes, which are used as in-distribution data. We use a different subset of 54 classes
as out-of-distribution data. The subset of 54 classes for each category are selected after subjective
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Figure 2: Comparison of DNN and Bayesian DNN visual activity recognition results using Precision-
Recall and ROC plots.



Table 1: Comparison of accuracies for DNN, Bayesian DNN MC Dropout and Stochastic Variational
Inference (Stochastic VI) models applied to the subset of MiT dataset (in-distribution classes).

Model Topl (%) | TopS5 (%)
DNN Model 53.90 81.25
Bayesian DNN (MC Dropout) Model 53.40 80.81
Bayesian DNN (Stochastic VI) Model 54.10 81.40
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(a) Baseline DNN (b) Bayesian DNN (MC Dropout) (c) Bayesian DNN (Stochastic-VI)

Figure 3: Density histogram of confidence measures for true (correct) and false (incorrect) predictions using
DNN and Bayesian DNN models: A distribution skewed towards right (near 1.0 on x-axis) indicates the model
has higher confidence in predictions than the distribution skewed towards left. [The density histogram is a
histogram with area normalized to one. Plots are overlaid with kernel density curves for better readability.]

evaluation to confirm the selected classes are not ambiguous and they fall into two distinct distribution
of classes.

In Figure[2] comparison of precision-recall (left) and ROC (right) plots are presented for the three
models. The Bayesian DNN stochastic variational inference (Stochastic VI) results achieve an im-
provement of 6.2% in precision-recall AUC over the non-Bayesian DNN model and an improvement
of 3.63% over the MC dropout approximate Bayesian inference model. The ROC AUC curve for
Bayesian DNN stochastic variational inference shows an improvement of 1.3% over the DNN results.
The improvement in AUC for the stochastic variational inference model applied to activity recog-
nition task is attributed to better measure of the confidence estimates obtained from the predictive
distribution through Monte Carlo sampling. The classification accuracy for MiT in-distribution
validation data is presented in Table[I] The accuracies for proposed stochastic variational inference
model is similar to the DNN model.
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Figure 4: Density histogram of confidence measures for in- and out-of-distribution samples using DNN and
Bayesian DNN models. [The density histogram is a histogram with area normalized to one. Plots are overlaid
with kernel density curves for better readability.]
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Figure 5: Density histogram of uncertainty measures from Bayesian DNN MC dropout and stochastic variational
inference (Stochastic VI) models for true (correct) and false (incorrect) predictions from in-distribution samples.
[The density histogram is a histogram with area normalized to one.]

In Figure EL the density histograms of confidence measure for true (correct) and false (incorrect)
predictions is presented. The density histogram is a histogram with area normalized to one. The
confidence measure for the conventional DNN is the SoftMax probabilities used for the predictions.
The mean of categorical predictive distribution obtained from Monte Carlo sampling provides the
confidence measure for Bayesian DNNs. The DNN model density histogram shows a peak near
higher confidence values for the true predictions, similar to the Bayesian DNN models. The DNN
SoftMax probability measure (Figure 3] (a)) is skewed towards higher probability values for the false
predictions. On the contrary, predictive mean probabilities obtained from the Bayesian DNN Monte
Carlo dropout (Figurd3| (b)) and stochastic variational inference (Figure 3] (c)) models provide more
reliable confidence measure indicating lower confidence values for the false predictions.

In Figure [d] density histogram of confidence measures for in- and out-of-distribution samples is
presented. All the models show higher confidence values for in-distribution data. For out-of-
distribution data, DNN SoftMax probability values (Figure E| (a)) show overconfident measure for the
erroneous predictions, whereas Bayesian DNNs (Figure@ (b) & (¢)) models show lower confidence
for out-of-distribution data. Stochastic variational inference approach gives better results than MC
dropout approach showing a more pronounced peak towards lower value for out-of-distribution
samples.

Bayesian DNN models quantify uncertainty which is beneficial to identify false predictions and
out-of-distribution samples. We compare predictive entropy and BALD [26] uncertainty measures
for Bayesian Monte Carlo dropout and stochastic variational inference models. In Figure [5] the
density histogram of uncertainty estimates for true and false predictions using the MiT dataset is
presented. The uncertainty estimates for both the models are skewed towards higher values for the
false predictions, but are skewed towards lower uncertainty for the true predictions. This indicates
the models reliably capture the uncertainty associated with the predictions.
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Figure 6: Density histogram of uncertainty measures from Bayesian DNN MC dropout and stochastic variational
inference (Stochastic VI) models for UCF101 dataset as in-distribution samples and MiT datasets as out-of-
distribution samples. [The density histogram is a histogram with area normalized to one.]

We also compare the uncertainty estimates using UCF101 [28] visual action recognition dataset
consisting of 101 activity classes. The comparison of uncertainty measures for UCF101 dataset
as in-distribution samples and the MiT dataset as out-of-distribution samples is shown in Figure [6]
Predictive entropy and BALD uncertainty measures demonstrate a clear separation of in- and out-
of-distribution samples. The stochastic variational inference approach shows better separation of
the peaks for in- and out-of-distribution samples (Figure[6|(b) & (d)) compared to the Monte Carlo
dropout method (Figure|§| (a) & (c)).

These results indicate the Bayesian DNNs for activity recognition task provide better confidence
measure compared to the non-Bayesian DNN model, along with uncertainty estimates to reliably
identify out-of-distribution data.

5 Conclusions

We presented a novel Bayesian DNN model for visual activity recognition which uses stochastic
variational inference technique during training to infer the approximate posterior distribution around
model parameters and perform Monte Carlo sampling on the posteriors. We evaluated our model
using a subset of classes from the Moments-in-Time (MiT) dataset. The presented results demonstrate
Bayesian DNNs can provide more reliable confidence measures as compared to the conventional
DNNs. The uncertainty estimates obtained for wrong predictions and out-of-distribution samples
indicate Bayesian DNNs can be more reliable for the visual activity recognition. We envision to
extend this framework to multimodal inputs (e.g., audio and vision) where the confidence estimates
obtained from Bayesian DNNs can help in fusing information based on uncertainty estimates to
achieve better predictions.
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