
Generative Convolutional Flow for Density
Estimation

Mahdi Karami
Department of Computer Science

University of Alberta
karami1@ualberta.ca

Laurent Dinh, Daniel Duckworth, Jascha Sohl-Dickstein, Dale Schuurmans
Google Brain

Abstract

Normalizing flows can be used to construct high quality generative probabilistic
models. However, training and generating samples from the flow requires evalu-
ating the determinant of the input-output Jacobian, and inverting the input-output
function, respectively. In order to make these computations feasible, existing
normalizing flow models have highly constrained architectures, in most cases pro-
ducing a Jacobian which is a diagonal, triangular, or low-rank matrix, enabling
fast Jacobian calculation. In this work, we introduce a set of novel and powerful
normalizing flows based on the circular convolution transform. We show that the
Jacobian of this transform is a circulant matrix that admits efficient determinant
computation and inverse mapping (deconvolution) in O(N logN) time. Moreover,
element-wise multiplications, that are widely used in normalizing flow architec-
tures, can be combined with these convolution transforms to increase the flexibility
of the flow. Since convolutional layers are important for many applications, espe-
cially in image and audio processing, we expect the proposed bijective mapping to
enable richer and more powerful normalizing flows for these domains.

1 Introduction

Flow-based generative networks have shown tremendous promise for modeling complex observations
in high dimensional datasets. In flow-based models, a complex probability density is constructed by
transforming a simple base density, such as a standard normal distribution, via a chain of smooth and
invertible mappings (bijections), yielding a normalizing flow. Such normalizing flows are employed
in various contexts, including approximating a complex posterior distribution in variational inference
[Rezende and Mohamed, 2015], or for density estimation with generative models [Dinh et al., 2016].

Unfortunately, using a complex transformation to define a normalized density requires the computation
of a Jacobian determinant, which is generally impractical for arbitrary neural network transformations.
To overcome this difficulty, previous work carefully designs architectures to impose a simple structure
in the Jacobian matrix, enabling fast computation of the Jacobian determinant. For example, one
approach has been to consider transformations that have a Jacobian corresponding to low rank
perturbations of a diagonal matrix, enabling the use of Sylvester’s determinant lemma [Rezende
and Mohamed, 2015, van den Berg et al., 2018]. Other works, such as [Dinh et al., 2014, 2016,
Kingma et al., Papamakarios et al., 2017], use a constrained transformation where the Jacobian has a
triangular structure. This latter scheme has proved particularly successful as this constraint is easy
to enforce without large sacrifices in expressiveness or computational efficiency. More recently,

32nd Conference on Neural Information Processing Systems (NIPS 2018), Montréal, Canada.

Kingma and Dhariwal [2018] proposed the use of 1× 1 convolutions, which owes its tractability to a
block diagonal Jacobian.

In this work, we propose an alternative non-linear convolution layer we call an adaptive non-linear
convolution filter. Here, the convolution kernel for a layer adapts to the input of the layer. Broadly
speaking, splitting the input of a layer x into two disjoint subsets {x1, x2}, the convolution updates
a subset of input as w(x1) ∗x2, while the convolution kernel w(x2) is a function of a disjoint subset
of input which can be modeled with deep neural networks. We present convolution operations
that are invertible and whose Jacobians can be computed efficiently, making them amenable for the
normalizing flow. As apposed to the causal convolution employed in [van den Oord et al., 2016]
to generate audio waveform, or in [Zheng et al., 2017] to approximate the posterior in variational
autoencoder, the convolution operations presented here are not constrained to depend only on the
preceding input variables.

1.1 Normalizing flows

Given an invertible and differentiable mapping g : Rn → Rn of a random variable z ∼ p(z), with
inverse transform f = g−1, the probability density function of the transform x = g(z) can be
recovered by the change of variable rule as

p(x) = p(z) |detJg|−1

= p(f(x)) |detJf | (1)

where Jg = ∂g
∂z> and Jf = ∂f

∂x> are the Jacobian matrices of functions g and f , respectively.
Furthermore, one can build a complex mapping g by composing a chain of simple bijective maps,
g = g1 ◦ g2 ◦ ... ◦ gK , that preserves the invertibility property with the inverse transformation being
f = fK ◦ fK−1 ◦ ... ◦ f1; subsequently, applying the chain rule to the Jacobian of the composition,
and using the fact that detAB = detAdetB, the log-likelihood can be written as

log p(x) = log p(z) +

K∑
k=1

log |detJfk | (2)

This mapping, which enables specifying complex densities by flow of a simple density p(z) through a
sequence of bijections, is called a normalizing flow [Rezende and Mohamed, 2015]. The basic density
is chosen from well known distribution families that can be easily evaluated, such as a standard
normal distribution. In comparison to variational inference methods that maximize a variational
lower bound on the likelihood by learning an approximate posterior distribution on the latent variable,
equation (2) provides a mechanism for exact likelihood maximization and density estimation.

Evaluating the Jacobian-determinant is the main computational bottleneck in equation (2) since, in
general, it can scale cubicly in the size of input. It is natural to seek general classes of structured
transformations that can mitigate this cost while retaining useful modeling flexibility. In the following
a class of such transformations will be introduced in detail.

2 Toeplitz structure and Circular Convolution

Although previous work has considered Jacobians with a block-diagonal or triangular form, these are
not the only useful possibilities. In fact, there are many other forms of transformation whose Jacobian
has sufficient structure to allow computationally efficient determinant calculation. One such structure
is Toeplitz property, i.e. the diagonal elements of a square matrix are identical, then calculation of the
determinant can be significantly simplified. Let J be

J =



a0 a−1 . . . a−s 0

a1 a0 a−1
. . . a−s

...
...

.
ar a−s
... ar

. . . a1 a0 a−1
0 ar . . . a1 a0


2

of size N ∗N with bandwidth size K := r + s. In general, the determinant of a Toeplitz matrix can
be evaluated in O(N2) time [Monahan, 2011], and specially for matrices of the form J with small
bandwidth size, this can even be more simplified to algorithms of O(K2 logN +K3) time [Cinkir,
2011]. Moreover, there are also efficient algorithms for inverting Toeplitz matrices [Martinsson et al.,
2005]. So the transformations with Jacobian matrices of Toeplitz form are suitable candidates for
normalizing flows. The Toeplitz matrices are of particular interest in convolutional neural networks
(CNNs) as the discrete convolution operation can be expressed in the form of a matrix product of a
Toeplitz matrix by the input [Gray et al., 2006].

Herein, we consider particular transformations whose Jacobian is a circulant matrix, a special and
well established form of Toeplitz structure. In a circulant matrix the rows (columns) are cyclic
permutations of the first row (column) i.e. Jl,m = J1,(l−m) mod N . This structure allows certain
algebraic operations, such as determinant calculation, inversion and eigenvalue decomposition, to be
readily performed in O(N logN) time by exploiting the fact that a square circulant matrix can be
diagonalized by a discrete Fourier transform [Gray et al., 2006]. Let’s define the circular convolution
as y := w~ x where y(i) :=

∑N−1
n=0 x(n)w(i− n) mod N , the key property we exploit in developing

an efficient normalizing layer is that the Jacobian of this convolution forms a circulant matrix, hence
its determinant and inverse transforms (deconvolution) can be computed efficiently. In the following
some of the main properties of this operation are summarized.

Theorem 1 Let y = w ~ x be a circular convolution on the input vector x, then:

a) The circular convolution operation can be expressed as a matrix multiplication equation y = Cwx
where Cw is a circulant square matrix with first row being w.

b) The Jacobian of this transform is Jy = Cw.

c) The eigenvalues of the circulant Jacobian matrix Cw are equal to the discrete Fourier transform
(DFT) of w, thus

log |detJy| =
N−1∑
n=0

log |wf (n)|

where wf (n) := FN{w}n.

d) The circular convolution can be expressed by element-wise multiplication in the frequency domain,
yf (k) = wf (k) xf (k), which is also known as the convolution-multiplication property. If wf (n) 6=
0 ∀n, this linear transform is invertible with inverse xf (n) = w−1f (n) yf (n). Moreover, its inverse
transform (deconvolution) is also a circular convolution operation with kernel winv := F−1N {w

−1
f }.

e) Since the fast Fourier transform (FFT) can be computed in time O(N logN) for DFT, the circular
convolution operation, its inverse transform, and computation of determinant-Jacobian can all be
efficiently performed in the frequency domain.

3 Input dependent convolution layer

The special form of convolution introduced so far appears to be particularly well suited to capturing
structure in images and audio signals, thus we seek to design more expressive normalizing flows
using this form of convolution bijection as a building block. For modeling flexibility, we propose
a convolution layer that uses a filter kernel that is a function of the input of the layer. Inspired by
the idea of the coupling layer in Dinh et al. [2016], we can build a modular bijection by splitting the
input x ∈ Rd into two parts {x1 ∈ Rd1 ,x2 ∈ Rd2 : d1 + d2 = d} termed as the base input and
update input, respectively, and only update the update input x2 by a convolution operation where the
kernel of this transform is a function of base input x1. More specifically, we use

y1 = x1

y2 = w(x1)~ x2 + b(x1) (3)

The kernel w(x1) and the translation b(x1) can be any nonlinear functions that are not required to
be invertible, hence they can be modeled by deep convolution networks with an arbitrary number
of hidden units, offering flexibility and rich representation capacity while preserving an efficient
learning algorithm.

3

3.1 Determinant-Jacobian calculation and the inverse transform

Due to modular structure of the flow in (3), its Jacobian can be expressed in terms of the Jacobian of
its convolution operation, denoted as J∗. More precisely, its Jacobian is

Jy =
∂y

∂x>
=

[
Id1

0
∂y2

∂x>
1

J∗

]
(4)

where J∗ =
∂(w∗x2)

∂x>
2

. Noticeably, the Jacobian is a block triangular matrix, so determinant can be
readily calculated by the product of determinant of the square blocks on its diagonal, therefore

log |detJy| = log |detJ∗| (5)

Hence, the Jacobian of the flow in (3) can be expressed in terms of the Jacobian of its convolution
operation, that, according to Theorem 1, can be expressed in terms of the Fourier transform of the
convolution kernel and can be computed efficiently in O(d2 log d2) by the fast Fourier transform
algorithm.

It is worth noting that the term (5) plays the role of a log barrier in the final loss function that prevents
the eigenvalues of the Jacobian (the filter coefficients in the frequency domain) from falling to zero.
This in turn enforces non-singularity of the convolution kernel resulting in an invertible transform.
The inverse of the transform (3) is

x1 = y1

x2 = w(y1)
inv ∗ (y2 − b(y1)). (6)

The inverse kernel w(y1)
inv can indeed be derived through the procedure explained in Theorem 1

using the same network as for the forward kernel w(y1), where only the matrix output of the network,
and not the network itself, needs to be inverted. The inverse convolution, also know as deconvolution,
can also be performed in the frequency domain as observed in Theorem 1.

3.2 Combined convolution multiplication layer

The convolution in (5) slides a filter spatially and applies the same weighted summation on all
locations of the signal1. To achieve a more flexible and richer filtering scheme, we can combine an
element-wise multiplication and convolution so that the filtering scheme varies over the location and
we achieve a more flexible and richer transformation. Also, the product of a diagonal matrix with a
circulant matrix was proposed in [Cheng et al., 2015] as a structured approximation for dense (fully
connected) linear layers while [Moczulski et al., 2015] showed that any N ×N linear operator can
be approximated to arbitrary precision by composing order N such products. Thus, the flows can be
modified to

y1 = x1

y2 = s(x1)�
(
w(x1) ∗ x2 + b(x1)

)
+ t(x1). (7)

Where again the Jacobian is a block triangular matrix and hence the determinant calculation will be
significantly simplified resulting in

log |detJy| = log |detJ∗|+ log |detJ�| (8)

where J� is the Jacobian of element-wise product that reduces to J� =
∑

i log |si|. Note again that
the term (8) in the optimization loss induces an invertible mapping with inverse transform

x1 = y1

x2 = w(y1)
inv ∗

(
s(y1)

inv � (y2 − t(y1))− b(y1)
)
. (9)

where sinvi,j := 1/si,j .

1For multichannel inputs such as images one convolution filter is applied per channel.

4

Relation to planar normalizing flow Rezende and Mohamed [2015], introduced a simple and
tractable planar normalizing flow that has the form

y = u� h(v>x+ b) + x. (10)

where h(.) is a differentiable and invertible nonlinearity and u ∈ Rd,v ∈ Rd, b ∈ R are the
parameters of the model. This transform is known as planar flow. The combined multiplication-
convolution transform (7) can be viewed as the generalization of the planar flow where the parameters
of the model are nonlinear function of input and the inner vector product is replaced with invertible
convolution operation. Also, in the transforms proposed in this work, the nonlinearity is embedded
into the deep neural networks modeling the parameter functions {s(.), t(.),w(.), b(.)}, and we didn’t
add a nonlinearity after the convolution. Subsequently, the output of the transforms are nonlinear
function of the input hence they are termed as non-linear convolution filter.

Remark: Multi-dimensional spectral transformations can be expressed in separable forms so that
the these operations can be performed by successively applying 1-dimensional transforms along each
dimension [Gonzalez and Woods, 1992]. The separability property induces that the results mentioned
so far can be generalized to multi-dimensional settings. In this work, we are particularly interested in
2-D operations that are used in image processing; more details on the 2-D circular convolution, its
corresponding block-circulant matrix and the diagonalization method can be found in [Gonzalez and
Woods, 1992, Ch. 5]. It can be readily verified that results presented in theorem 1 can be extended to
2-D case using 2-D circular convolution and the 2-D DFT2.

4 Model architecture

An arbitrarily complex density approximation can be performed by composing a chain of the
convolution coupling layers, introduced in this work. As explained prior to section 1.1, the determinant
of Jacobian and the inverse of this composition can be obtained readily.

Due to special structure of the convolutional coupling layer, only one part of the input, update input,
is transformed by each layer and the remaining part, base input, is left unaltered. To overcome this,
we permute the assignment of pixels and/or channels to the base input and update input in every
other layer so that both parts of the input are updated; note that one layer exhibits a lower block-wise
triangular Jacobian and the other has an upper block-wise triangular Jacobian3.

This architecture can also be modified in order to provide latent representations at multiple layers and
scales, by factoring out a subset of latent variables every time the scale of the image is changed, as in
Dinh et al. [2016]. This both enables a multi-scale representation, and reduces computational cost.

5 Experiments

We evaluated the proposed generative model on MNIST [Y. LeCun, 1998] and CIFAR-10 [Krizhevsky,
2009]. To transform the inputs from a bounded to an unbounded domain, the logit mapping of the
form y = logit(α + (1 − α) x

256) is applied with α = 0.05 , 10−6 to images from CIFAR-10 and
MNIST, respectively. The model consists of 4 stacked coupling layers each composed of 8 combined
multiplication-convolution flows (MCONV) (7). ResNet neural networks [He et al., 2016] with 8
residual blocks, each with 64 feature maps, are employed to model the non-linear functions specifying
the parameters of the flow. The Adam optimizer [Kingma and Ba, 2014] was used to train the model,
with a learning rate of .0005 and mini-batch sizes of 128 in the training phase.

Three generative models: Real NVP [Dinh et al., 2016], masked autoregressive flow (MAF) [Pa-
pamakarios et al., 2017] and inverse autoregressive flow (IAF-VAE) [Kingma et al.], are used as
benchmark models. The results of MAF are obtained from the original paper which implemented a
general-purpose density estimation model and does not take into account the 2D structure of image
data.

2 Due to separability property, the 2-D DFT of matrices of size M ×N can be computed inO(MN(logM +
logN)) time.

3This is analogous to LU factorization, where one can compose a lower triangular matrix with and upper
triangular one to obtain an arbitrary square matrix, with proper row permutation [Horn et al., 1990].

5

MNIST CIFAR-10
Real NVP 1.09 3.49
MAF (10) 1.91 4.31
IAF-VAE - <3.28
MCONV 1.07 3.44

Table 1: Bits per dimension achieved by different density estimators on the MNIST and CIFAR-10
test data (training results shown in parentheses).

Figure 1: (left) Samples generated from an MCONV flow model trained on the MNIST dataset. (right) Samples
generated from an MCONV flow model trained on the CIFAR-10 dataset.

The results in Table 1, given in bits per dimension, show that the proposed normalizing flow model is
able to improve on the results of previous methods on these datasets.

References
Yu Cheng, Felix X Yu, Rogerio S Feris, Sanjiv Kumar, Alok Choudhary, and Shi-Fu Chang. An

exploration of parameter redundancy in deep networks with circulant projections. In Proceedings
of the IEEE International Conference on Computer Vision, pages 2857–2865, 2015.

Z. Cinkir. A fast elementary algorithm for computing the determinant of Toeplitz matrices. ArXiv
e-prints, January 2011.

Laurent Dinh, David Krueger, and Yoshua Bengio. Nice: Non-linear independent components
estimation. arXiv preprint arXiv:1410.8516, 2014.

Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density estimation using real nvp. arXiv
preprint arXiv:1605.08803, 2016.

Rafael C Gonzalez and Richard E Woods. Digital image processing, 1992.

Robert M Gray et al. Toeplitz and circulant matrices: A review. Foundations and Trends R© in
Communications and Information Theory, 2(3):155–239, 2006.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770–778, 2016.

Roger A Horn, Roger A Horn, and Charles R Johnson. Matrix analysis. Cambridge university press,
1990.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

6

Diederik P Kingma and Prafulla Dhariwal. Glow: Generative flow with invertible 1x1 convolutions.
arXiv preprint arXiv:1807.03039, 2018.

Diederik P Kingma, Tim Salimans, Rafal Jozefowicz, Xi Chen, Ilya Sutskever, and Max Welling.
Improved variational inference with inverse autoregressive flow.

Alex Krizhevsky. Learning multiple layers of features from tiny images. 2009.

Per-Gunnar Martinsson, Vladimir Rokhlin, and Mark Tygert. A fast algorithm for the inversion of
general toeplitz matrices. Computers & Mathematics with Applications, 50(5-6):741–752, 2005.

Marcin Moczulski, Misha Denil, Jeremy Appleyard, and Nando de Freitas. Acdc: A structured
efficient linear layer, 2015.

John F Monahan. Numerical methods of statistics. Cambridge University Press, 2011.

George Papamakarios, Iain Murray, and Theo Pavlakou. Masked autoregressive flow for density
estimation. In Advances in Neural Information Processing Systems, pages 2338–2347, 2017.

Danilo Rezende and Shakir Mohamed. Variational inference with normalizing flows. In Proceedings
of The 32nd International Conference on Machine Learning, pages 1530–1538, 2015.

Rianne van den Berg, Leonard Hasenclever, Jakub M Tomczak, and Max Welling. Sylvester
normalizing flows for variational inference. arXiv preprint arXiv:1803.05649, 2018.

Aaron van den Oord, Nal Kalchbrenner, Lasse Espeholt, Oriol Vinyals, Alex Graves, et al. Conditional
image generation with pixelcnn decoders. In Advances in Neural Information Processing Systems,
pages 4790–4798, 2016.

C. Cortes Y. LeCun. The mnist database of handwritten digit. 1998.

Guoqing Zheng, Yiming Yang, and Jaime Carbonell. Convolutional normalizing flows. arXiv preprint
arXiv:1711.02255, 2017.

7

	Introduction
	Normalizing flows

	Toeplitz structure and Circular Convolution
	Input dependent convolution layer
	Determinant-Jacobian calculation and the inverse transform
	Combined convolution multiplication layer

	Model architecture
	Experiments

