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Abstract

Deep neural networks give state of the art performance for a wide array of tasks.
Extrapolation of predictions to out of distribution data however is a challenge.
Uncertainty estimation for predictions can greatly mitigate the harms of wild
extrapolation and can be useful in tasks like Bayesian optimization or reinforcement
learning. Due to its simplicity, model ensembling is a popular way of estimating
uncertainty on in and out of distribution data. Here, we present a new training
objective to better control the out of distribution uncertainty of neural network
ensembles. The idea is to encourage larger overall ensemble diversity for all
possible inputs that might be encountered. We apply our objective to 38 Protein-
DNA binding regression datasets and obtain significant improvements on out
of distribution negative log-likelihood and RMSE, without sacrificing any in-
distribution performance. Our improved uncertainty estimates also lead to better
Bayesian optimization performance on a number of affinity-optimization tasks.

1 Introduction

Model ensembling provides a simple, yet extremely effective technique for improving the predictive
performance of arbitrary supervised learners each trained via empirical risk minimization (ERM)
[L, 2]. Often, ensembles are utilized not only to improve predictions on test examples stemming
from the same underlying distribution as the training data, but also to provide estimates of model
uncertainty when learners are presented with out-of-distribution (OOD) examples that may look
different than the data encountered during training [3} 4l]. The widespread success of ensembles
crucially relies on the variance-reduction produced by aggregating predictions that are statistically
prone to different types of individual errors [S]]. Thus, prediction improvements are best realized by
using a large ensemble with many base models, and a large ensemble is also typically employed to
produce stable distributional estimates of model uncertainty [/1} 6.

Despite this, practical applications of massive neural networks (NN) are commonly limited to a
small ensemble due to the unwieldy nature of these models [4} (7, [8]. Although supervised learning
performance may still be enhanced by an ensemble comprised of only a few ERM-trained models,
the resulting ensemble-based uncertainty estimates can exhibit excessive sampling variability in low-
density regions of the underlying training distribution. Such unreliable uncertainty estimates are highly
undesirable in applications where future data may not always stem from the same distribution (e.g.
due to sampling bias, covariate shift, or the adaptive experimentation that occurs in bandits, Bayesian
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optimization (BO), and reinforcement learning (RL) contexts). Here, we propose a straightforward
technique - Maximize Overall Diversity (MOD) - to stabilize the OOD model uncertainty estimates
produced by an ensemble of arbitrary neural networks. The core idea is to consider all possible inputs
and encourage as much overall diversity in the corresponding model ensemble outputs as can be
tolerated without diminishing the ensemble’s predictive performance. MOD utilizes an auxiliary loss
function and data-augmentation strategy than is easily integrated into any existing training procedure.

Related Work. NN ensembles have been previously demonstrated to produce useful uncertainty
estimates, including for BO/RL sequential experimentation applications [6} 3} (9, 4, [10]. Proposed
methods to improve ensembles of limited size include adversarial training to enforce smoothness
[3] and maximizing ensemble output diversity over the training data [2]. In contrast, our focus is on
controlling ensemble behavior over all possible inputs, not merely those presented during training.
Consideration of all possible inputs has been advocated in the method of data-augmented regression
[L1], although not in the context of uncertainty estimation. Like our approach, Hafner et al. [12] also
aim to control NN output-behavior beyond the training distribution, but our methods do not require
the Bayesian formulation they impose and can be applied to arbitrary NN ensembles, which are one
of the most straightforward methods used for quantifying neural network uncertainty [6, 4]. While
we primarily consider regression settings here, our ideas can be easily adapted to classification by
replacing variance terms with entropy terms; a similar variant that relies on an auxiliary generator
network to augment the training data has been recently proposed in [13].

2 Methods

We consider a standard regression setup, assuming continuous target values are generated via:
Y = f(X) + ewithe ~ N (0, 02), such that o, may heteroscedastically depend on the feature values
X. Given a limited training dataset D = {x,,,y,})_; where X ~ P, specifies the underlying
data distribution (from which samples are called in-distribution), our goal is to learn an ensemble
of M neural networks that accurately models both the underlying function f(X) as well as the
uncertainty in ensemble-estimates of f(X'). Of particular concern are scenarios where test examples
may stem from a different distribution P,,; (i.e. they may be out-of-distribution). As in [3], each
network m (with parameters 6,,) in our NN ensemble outputs both an estimated mean p,,, (z) and
variance o2, (), and the per network loss function L(0,,; T, yn) = —log pg,, (yn|Z»), the negative
log-likelihood (NLL) under our Gaussianity assumption. While traditional bagging provides different
training data to each ensemble member, we simply train each NN using the entire dataset, since
the randomness of separate NN-initializations and SGD-training suffice to produce comparable
performance to bagging of NN models [3 14} 4].

Following [3]], we estimate Py-|x—, (and NLL with respect to the ensemble) by treating the aggregate
ensemble output as a single Gaussian distribution N (fi(x), 5%(z)). Here, the ensemble-estimate of
f(X) (used in RMSE calculations) is given by ji(x) = mean ({1, (x)}2/_,), and the uncertainty in
the target value is given by: 52(z) = 02 (z) + 02 4(z) based on noise-level estimate: o2 (z) =

eps eps
mean ({02, (x)}}_,) and model uncertainty estimate: 02 4(z) = variance ({m (z)}2_,).

Assuming X € XY € [—B, B] have been scaled to bounded regions, MOD encourages higher
ensemble diversity by introducing an auxiliary loss that is computed over augmented data uniformly
sampled throughout the entire feature-space. The underlying population objective we target is:

M
. . 1 1 2
elf.r.l.lng Lin — vLous where: Ly = M mz=:1 ]EPin [L(emv Zz, y)]7 Lout = E JX Umod(x) dz

with normalization factor Z = v dx, and user-specified penalty v > 0. Since NLL entails a proper-
scoring rule [3]], minimizing the above objective with a sufficiently small value of v will ensure the
ensemble seeks to recover Py |x—_, for inputs x that lie in the support of the training distribution
P;, and otherwise to output large model uncertainty for OOD z that lie beyond this support. As it
is difficult in most applications to specify how future OOD examples may look, we aim to ensure
the ensemble outputs high uncertainty estimates for any possible P,,; by integrating over the entire
input space. In practice, we approximate L, using the average loss over the training data (as in
ERM), and train each 6,,, with respect to its contribution to this term independently of the others
(as in bagging). To approximate Loy, we similarly utilize an empirical average based on augmented



examples {z; le sampled uniformly throughout feature space X'. The formal MOD procedure is
detailed in Algorithm|[I] We advocate selecting + as the largest value for which estimates of L, (on
held-out validation data) do not indicate worse predictive performance. This strategy naturally favors
smaller values of y as the sample size N grows, thus resulting in lower model uncertainty estimates
(with v — 0 as N — oo when P, is supported everywhere and our NN are universal approximators).

Algorithm 1 MOD training procedure

1: Input: Training data D = {(x,,, y,)}_;, penalty v > 0

2: QOutput: Parameters of ensemble of M neural networks 61,...,0,1

3: Initialize 61,...,0; randomly

4: repeat

5: Sample minibatch of size B from training data: {(zy,yp)}Z,

6: Sample B augmented inputs Z1,..., £ g uniformly at random from X

7: form=1,...,Mdo

8: Update 6,,, via SGD with gradient = %ng [Zfll L0 (xp,yp)) — Zf’;l oiod(%b)]
9: until iteration limit reached

3 Results

Protein Binding Microarray Data. This is a collection of 38 different datasets, each of which
contains measurements of the binding affinity of a single transcription factor (TF) protein against all
possible 8-base DNA sequences [15]. We consider each dataset as a separate task with Y taken to be
the binding affinity (rescaled to [0,1] interval) and X the one-hot embedded DNA sequence (as we
ignore reverse-complements, there are ~ 32,000 possible values of X).

Regression Performance. = We trained a small ensemble of 4 neural networks with identical
architecture (1-hidden layer with 50 units, ReL.U activation, two sigmoid outputs to estimate the
mean and variance of Y, and 12 regularization). We experiment with the case where the training set
is extremely small (300 examples) and use a small validation set (300 examples) for tuning  and
other NN hyperparameters (based on validation NLL). The remainder of the possible DNA-sequences
form the test-set, and we also considered an alternative OOD test set comprised only of the data with
Y -values in the top 10%. We compare MOD against two alternatives based on the same NN ensemble

without our augmented-loss Loy: training the ensemble in the usual fashion (Normal), and training

the ensemble with an additional loss = —v+- Zfil o2 4(z) that attempts to maximize diversity over

the training data (MTD), similar to the method proposed in [2]].

Table [T] shows OOD and in-distribution performance across 38 TFs (averaged over thirteen runs
using random data splits and NN initializations). MOD has significantly improved performance on
the OOD test set, while performing roughly similar to the other methods on the in-distribution test
examples. Out of the 38 datasets, MOD outperforms the Normal ensemble on 28 in OOD-NLL
and on 27 on OOD-RMSE, and outperforms the MTD ensemble on 24 in OOD-NLL and on 22 on
OOD-RMSE. Over the in-distribution test data, MOD outperforms the Normal ensemble on 31 (and
36) datasets in NLL (and RMSE), and performs comparably to the MTD ensemble (even though
MOD is not designed for in-distribution regularization). Tables [2]and 3] contain the complete results
for all 38 datasets.
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Figure 1: Relative optimal value for one BO
task (averaged over 10 replicate BO runs).



Bayesian Optimization. Next, we compared how the MOD ensemble performed against the Normal
ensemble in 38 Bayesian optimization tasks using the same protein binding data (see [[16]]). For each
TF, we performed 30 rounds of DNA-sequence acquisition, acquiring batches of 10 sequences per
round in an attempt to maximize binding affinity. We used the upper confidence bound (UCB) as our
acquisition function [10]], ordering the candidate points via fi(x) + 8 - 0moa () (with UCB coefficient
B = 1). At every acquisition iteration, we randomly held out 10% of the training set as the validation
set and chose the MOD +~ penalty that produced the best validation NLL (out of choices: 5, 10, 20).
For each of the 38 TFs, we performed 10 BO runs with different seed sequences (same seeds used
between Normal and MOD) of 200 points randomly sampled from the bottom 90% of Y values.

. . . ma. xT .
We evaluated on two metrics: relative optimal value r = r;‘;f(“i;]f()’) (numerator quantifies the
TE x

best point acquired so far and denominator is the global best), and fraction of sequences retrieved
out of those with affinity-values in the top 1% [17]. Figure E] shows rp for the TF VENTX, a task
in which MOD clearly outperforms the Normal ensemble (results for other TFs in Figure [2). On
most tasks, MOD-BO typically outperforms Normal-BO in the later acquisition rounds and is also
able to achieve higher average rr over all 38 tasks. At the end of 30 acquisition rounds, MOD-BO
outperformed Normal-BO for 25 of the 38 tasks (with equal performance on 2 additional tasks). For
the fraction of top 1% of points retrieved (on average across 10 BO runs), MOD-BO outperformed
Normal-BO for 26 of the 38 TFs (full results in Table [).



Table 2: NLL and RMSE on out-of-distribution test set for all 38 TF datasets.

Out-of-distribution NLL

Out-of-distribution RMSE

TF MOD MTD Normal MOD MTD Normal

PHOX2B 0.03 +£0.24 0.20 £ 0.15 0.21+0.15 0.34+0.02 0.35+0.02 0.35+0.03
POU6F2 —-0.31+0.14 —-0.25+0.26 —-0.23+0.20 0.28+0.02 0.28+0.02 0.29+0.01
HOXC4 —0.31+0.24 —-0.19+0.20 —-0.22+0.37 0.274+0.02 0.27+0.02 0.27+0.02
ISX -0.12+0.17 -0.174+0.14 -0.13+0.15 0.284+0.01 0.27+0.01 0.28+0.02
VAX2 0.37 +£0.27 0.38 +0.22 0.55+0.35 0.35+0.02 0.34+£0.02 0.35+0.02
NR1H4 -1.17+0.16 -1.134+0.09 -1.14+0.11 0.174+0.02 0.17+0.01 0.17+0.01
ZNF655 0.56 +£ 0.31 0.59 +0.34 052+0.24 0.33+0.01 0.33+0.01 0.34+0.01
WT1 —-148 +£0.19 —-1.57+0.11 -1.51+0.14 0.144+0.01 0.13+0.01 0.14 +£0.01
NKX2-5 —-097+0.14 -1.00+0.18 —-1.00+0.15 0.18+0.01 0.17+0.01 0.18 £0.01
GFI1 —0.594+0.23 —-0.60+0.17 —-0.59+0.21 0.214+0.01 0.21+£0.01 0.21£0.01
HOXD13 —-0.34+0.21 —-0.34+0.20 -0.27+0.25 0.23+0.01 0.23+0.01 0.24 +0.02
KLF1 0.66 + 0.31 0.58 +0.30 0.57+0.24 0.38+0.02 0.39+0.02 0.39+0.01
ESX1 —0.04 +£0.24 —0.01 +0.25 0.02 +£0.21 0.294+0.02 0.29£0.02 0.30+0.02
PAX4 —0.69+0.16 —-0.61+0.22 —-0.69+0.20 0.234+0.02 0.244+0.02 0.23+0.02
PAX6 0.23 +£0.09 0.24 +0.10 0.24 +0.08 0.39+0.01 0.39+0.01 0.39+0.01
SNAI2 —0494+0.18 —-0454+0.17 —-0.38+0.20 0.234+0.01 0.24+0.01 0.24+0.01
GFI1B —-0.63+0.13 —-0.544+0.20 —-0.59+0.22 0.214+0.01 0.224+0.01 0.21+0.01
PBX4 —081+0.12 —-0.77+0.15 —-0.75+0.14 0.214+0.01 0.214+0.01 0.21 +£0.02
ZNF200 —0.01 +£0.12 0.02 +£0.12 0.01+0.12 0.33+0.01 0.33+£0.01 0.33+0.02
POU3F4 —-0.88+0.16 —-0.82+0.11 -0.89+0.19 0.20+0.01 0.20+0.01 0.20+0.01
FOXC1 —-0.76 £0.13 —-0.75+0.14 —-0.69+0.15 0.224+0.02 0.224+0.02 0.23+0.02
NR2E3 0.14 + 0.15 0.11 +£0.15 0.10+0.17 0.324+0.02 0.32+0.01 0.32+0.01
ARX —0.34+0.25 —-0.20+0.20 —-0.16+0.20 0.274+0.03 0.28+0.02 0.28 +0.02
PITX2 0.20 +0.21 0.13 +0.28 0.24 +0.18 0.30+0.01 0.30+0.02 0.30+0.01
CRX —0.254+0.22 —-0.174+0.28 —-0.14+0.28 0.224+0.01 0.224+0.01 0.23+0.01
EGR2 1.13 +0.26 1.04 +0.19 1.06 £0.18 0.47+0.01 0.47+0.01 0.47+0.01
HESX1 —0.34+0.19 —-0.294+0.22 —-0.24+0.17 0.26+0.01 0.26+0.02 0.27 £+ 0.01
OVOL2 0.87 £0.25 0.82 +0.26 0.87+0.27 0.36+0.01 0.36+£0.01 0.36+0.01
VENTX —0.30+0.23 —-0.094+0.25 —-0.00+0.17 0.294+0.03 0.30+0.03 0.31+0.02
PAX3 —-0.224+0.27 —-0.174+0.25 —-0.08+0.26 0.26+0.02 0.27+0.02 0.28 +0.02
POU4F3 —-0.47+0.16 —-0.50+0.14 —-045+0.13 0.23+0.01 0.23+0.01 0.24+0.01
VSX1 0.06 +0.24 0.08 +0.20 0.22+0.19 0.29+0.02 0.29+0.02 0.30+0.02
MSX2 0.24 +0.23 0.21 +£0.23 0.30+0.26 0.32+0.02 0.32+0.01 0.32+0.02
KLF11 —-0.20+0.14 —-0.08+0.16 —-0.02+0.11 0.304+0.02 0.30+0.02 0.32+0.02
PROP1 —0.214+0.24 —-0.30+0.22 —-0.224+0.23 0.294+0.02 0.284+0.03 0.29 +0.02
BCL6 —-1.10+0.11 —-1.18+0.13 -1.09+0.14 0.18+£0.02 0.17+0.01 0.18 £0.01
SIX6 1.10 + 0.31 1.13+£0.24 1.24+0.24 0.39+0.02 0.40+0.02 0.414+0.01
PAX7 —-0.224+0.16 —-0.23+0.19 —-0.18+0.15 0.294+0.02 0.29+0.02 0.29 +0.01




Table 3: NLL and RMSE on in-distribution test set for all 38 TF datasets.

In-distribution NLL

In-distribution RMSE

TF MOD MTD Normal MOD MTD Normal

PHOX2B -1.13+0.04 -1.13+0.05 -1.11+0.04 0.194+0.01 0.194+0.01 0.20+0.01
POU6F2 —-1.25+0.04 —-1.25+0.04 -1.254+0.04 0.17+0.01 0.17+0.01 0.17+0.01
HOXC4 —1.46+0.05 —-146+0.04 —-145+0.05 0.144+0.01 0.14+0.01 0.14+0.01
ISX -1.394+0.04 -1.394+0.03 -1.39+0.04 0.154+0.01 0.15+0.01 0.15+0.01
VAX2 —-1.37+0.05 —-136+0.05 —-1.36+0.04 0.16+0.01 0.16+0.01 0.16 £0.01
NR1H4 —-153+0.03 —-1.534+0.03 -1.53+0.02 0.13+0.00 0.134+0.00 0.134+0.00
ZNF655 -1.30+0.03 —-1.30+0.03 —-1.30+0.03 0.16+0.01 0.16+0.01 0.16 +0.01
WT1 —-1.64+0.03 —-1.64+0.03 -1.64+0.04 0.124+0.00 0.124+0.00 0.124+0.00
NKX2-5 —1.58+0.05 —-1.58+0.03 —-1.58+0.03 0.12+0.00 0.124+0.00 0.12+0.00
GFI1 —1.53+0.03 —-1.53+0.04 —-1.53+0.03 0.13+0.00 0.13+0.00 0.13+0.00
HOXD13 —-1.56+0.03 —-1.56+0.02 —-1.55+0.03 0.13+0.00 0.13+0.00 0.13+0.00
KLF1 —-1.114+0.04 —-1.114+0.04 -1.114+0.04 0.204+0.01 0.20+0.01 0.20+0.01
ESX1 —-1.30+0.04 —-1.30+0.04 —-1.30+0.04 0.16+0.01 0.16+0.01 0.16 +0.01
PAX4 —-1.324+0.04 -132+0.03 —-1.32+0.03 0.16+0.01 0.16+0.01 0.16 +0.01
PAX6 —1.07+0.03 —-1.07+0.03 —1.07+0.03 0.21+0.01 0.21+0.01 0.21+0.01
SNAI2 —1.454+0.03 —-1454+0.03 —-144+0.03 0.14+0.01 0.144+0.00 0.14+0.00
GFI1B —1.50+0.04 —-1.50+0.03 —-1.49+0.03 0.14+0.00 0.144+0.00 0.14+0.00
PBX4 —-1.414+0.03 —-1414+0.03 —-141+0.03 0.15+0.00 0.154+0.00 0.15+0.00
ZNF200 -1.16 £0.03 —-1.16+0.03 -1.16+0.04 0.194+0.01 0.19+0.01 0.19+0.01
POU3F4 —-1.50+0.04 —-1.50+0.03 —-1.49+0.04 0.134+0.00 0.13+0.00 0.14+0.00
FOXC1 —-1.33+0.04 —-1.34+0.04 -1.33+0.04 0.16+0.01 0.16+0.01 0.16 £0.01
NR2E3 —1.284+0.03 —-1.284+0.03 —-1.27+0.03 0.17+0.01 0.17+0.01 0.17+0.01
ARX —-1.254+0.04 —-1.254+0.04 -—-1.244+0.04 0.174+0.01 0.17+0.01 0.17+0.01
PITX2 —-1.35+0.04 —-136+0.04 —-1.35+0.04 0.16+0.01 0.16+0.01 0.16 +0.01
CRX —158 +£0.04 —-1.584+0.04 —-1.57+0.04 0.124+0.01 0.124+0.01 0.13+0.00
EGR2 —1.06 +0.04 —1.06+0.03 —1.06+0.03 0.21+0.01 0.21+0.01 0.21+0.01
HESX1 —-1.34+0.03 -1.33+0.03 —-1.33+0.03 0.16+0.00 0.16+0.00 0.16+0.00
OVOL2 -1.33+0.03 —-1.33+0.03 -1.324+0.04 0.16+0.00 0.16+0.00 0.16 +£0.01
VENTX —-1.174+0.05 —-1.17+0.06 —-1.16+0.06 0.18+0.01 0.184+0.01 0.18+0.01
PAX3 —-1.324+0.04 -1.33+0.03 —-1.31+0.03 0.16+0.01 0.16+0.01 0.16 +0.01
POU4F3 —-1.50+0.03 —-1.50+0.03 —-1.50+0.04 0.13+0.00 0.13+0.00 0.14+0.00
VSX1 —-1.384+0.04 —-1.384+0.04 -—-1.37+0.04 0.154+0.01 0.15+0.01 0.15+0.01
MSX2 —-1.37+0.04 —-137+0.04 —-1.37+0.04 0.15+0.01 0.15+0.01 0.16 +0.01
KLF11 —-1.20+0.04 -1.194+0.03 —-1.19+0.03 0.18+0.01 0.184+0.01 0.18+0.01
PROP1 —-1.324+0.04 —-132+0.04 —-1.33+0.03 0.16+0.01 0.16+0.01 0.16 +0.01
BCL6 —1544+0.03 —-155+0.03 —-1.54+0.04 0.134+0.00 0.13+0.00 0.13+0.00
SIX6 -1.224+0.04 -1224+0.04 -1.224+0.04 0.184+0.01 0.18+0.01 0.18+0.01
PAX7 —-1.274+0.04 —-1274+0.04 -—-1.274+0.04 0.174+0.01 0.17+0.01 0.17+0.01




Table 4: Mean fraction (across 10 BO runs) of top 1% of points retrieved.

| TF | MOD [ Normal |

ARX 0.191463 | 0.184451
BCL6 0.400610 | 0.403354
CRX 0.187805 | 0.182012
EGR2 0.213720 | 0.153659
ESX1 0.464634 | 0.492378
FOXC1 | 0.198781 | 0.212195
GFI1B | 0.089634 | 0.089329
GFI1 0.145427 | 0.114634
HESX1 | 0.433232 | 0.403354
HOXC4 | 0.449695 | 0.441463
HOXD13 | 0.402439 | 0.402134
ISX 0.401829 | 0.426524
KLFI11 | 0.295427 | 0.271037
KLF1 0.327744 | 0.304573
MSX2 | 0.507622 | 0.492378
NKX2-5 | 0.328049 | 0.329573
NR1H4 | 0.242073 | 0.236890
NR2E3 | 0.102744 | 0.100000
OVOL2 | 0.029878 | 0.002134
PAX3 0.304878 | 0.317378
PAX4 0.308232 | 0.327134
PAX6 0.018902 | 0.017683
PAX7 0.224695 | 0.234756
PBX4 0.262805 | 0.249695
PHOX2B | 0.355793 | 0.333537
PITX2 | 0.258537 | 0.228354
POU3F4 | 0.512805 | 0.525305
POU4F3 | 0.506097 | 0.496646
POUG6F2 | 0.360061 | 0.369512
PROP1 | 0.490854 | 0.427439
SIX6 0.261585 | 0.253963
SNAI2 | 0.224390 | 0.221341
VAX2 0.443293 | 0.428354
VENTX | 0.214024 | 0.201220
VSX1 0.483232 | 0.466463
WT1 0.292683 | 0.310061
ZNF200 | 0.084451 | 0.100915
ZNF655 | 0.107012 | 0.086585




Figure 2: Bayesian optimization performance of MOD ensemble vs. Normal ensemble. The relative optimal
value rr values at each acquisition iteration are averaged over 10 replicate BO runs.
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