
Relational Attention Networks via Fully-Connected
Conditional Random Fields

Ziyin Liu‡, Junxiang Chen†, Paul Pu Liang♠, Masahito Ueda‡

‡University of Tokyo, †Northeastern University, ♠Carnegie Mellon University
zliu@cat.phys.s.u-tokyo.ac.jp, jchen@ece.neu.edu,

pliang@cs.cmu.edu, ueda@phys.s.u-tokyo.ac.jp

1 Introduction
This paper proposes a new attention mechanism that aims at building up a new level of interpretability
of attention-based neural networks, while at the same time working towards connecting machine
learning techniques such as conditional random fields (CRFs) [20], relational deep learning [30, 6] and
physics models. The standard attention mechanism [4] involves feeding the encoded representations
to a neural network to compute the weights for each encoded state [25, 3, 8, 13, 28]. However, the
computation of attention weights is based on a black-box neural network module that cannot be
interpreted. In an effort to study why neural networks decide to output such attention, we propose to
impose structures via a graphical model to compute the attention weights. Our proposed model is
closely related to inference in Conditional Random Fields [20] and aims to generalize the existing
work in incorporating structures (inductive biases) into deep models [7, 17]. However, our model
is not directly comparable to theirs because their work impose structure on the attentions as a way
to incorporate prior knowledge into the task, while ours discovers structures in the task in an end-
to-end fashion. In the physics community, our model and algorithm are closely related to spin glass
models [1, 2, 31].

2 Method
We consider a problem setting in which the input is a time sequence with arbitrary but bounded length
and the output is also a time sequence (output of a single scalar can be thought of as a sequence
of length 1). Such tasks include machine translation [4, 25] or natural language style transfer [15].
Traditional approaches use an attention layer defined often using a neural network on top of the
encoder states. This standard algorithm for an encoder/decoder network is given in Algorithm 2.

2.1 Fully Connected CRF Attention and Mean-Field Approximation

Let hi
T
i denote the input sequence of length T , dt output of a decode at time step t. Intuitively, for

every output dt our method defines a series of random variables {si}
T
i on each of the input, and

each of si ∈ {0,1} where si = 0 means that the current input is irrelevant to the output of dt, and
si = 1 means relevance. The series {si}

T
i can be seen as a “hard attention" over the input. We can

also imagine that the relevance of each input can interact with the relevance of other inputs (for
example, in a translation task, the fact that a word the is relevant means that a different the at another
position is irrelevant). We model this interation with a CRF, and we can define unary (φi) and binary
potentials (Jij) on si, and we want to find the most likely joint state argmaxs1,...,sT Pr[s1, ..., sT ]

for each dt. Intuitively, if Jij > 0, then si and sj tend to have opposite sign to minimize the energy
and so attending on one of these input inhibits the attention on the other; if Jij < 0, then si and
sj tend to focused on simultaneously. Jij are output from a small neural network. Since an exact
inference is intractable, we use mean field approximation to find an approximate solution to the
problem. The advantage of mean field approximation is that it is efficient on modern GPUs and is
end-to-end trainable. Our algorithm is given in Algorithm 1. This iterative procedure is similar to but
more general than the algorithm presented in [18, 32]. In the next section, we derive our update rule
and prove the theoretical soundness of our method.
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Algorithm 1 Mean-field-Attention(∪T
i hi, dt). Note that D can be any arbitrarily defined function

with necessary smoothness and regularity (e.g., a multilayer perceptron). ∪ means concatenation.

1: Input: (∪Ti hi, dt)
2: Initialize τ ← 0, k
3: φi ←Dunary(hi, dt) // computing on-site potential
4: Jij ←Dbinary(hi, hj , dt) // computing interaction potential
5: χ(0)i ← φi
6: while χ(t) not converged AND τ < k do
7: si ← sigmoid(χ(τ)i )
8: χ

(τ+1)
i ← ∑j Jijsj + φi

9: τ ← τ + 1
10: Output: sigmoid(χ(τ−1)i ) // output expected spin at the converged point

2.2 Variational Upper Bound of the Mean-field Approximation
Now we show that our algorithm finds a variational upper bound for the optimal solution. In this
work we primarily present our work in a theoretical physics framework. The theorem is originally
stated in a physical context, and we adapt it for our purpose. In particular, we set the temperature to
be 1 and we will present the proofs in the appendix:

Theorem 1. (Bogoliubov inequality) Let the Hamiltonian of the system be written in terms of a
non-interacting Hamiltonian H0 (i.e. this part contains only unary potentials), and a interacting part
Hi (i.e. this contains binary potentials): H =H0 +Hi. Then the free energy of the system F obeys
the following inequality:

F ≤ F0 ∶= ⟨H⟩0 − S (1)

where S is the entropy of the system, and ⟨H⟩0 is the energy of the system given by H0.

The above theorem guarantees that F0 is always an upper bound for F . As a result, we can minimize
F0 instead, to obtain an approximate inference procedure. The following theorem gives the optimal
update rule if we use a factorizable H0 as our Hamiltonian:

Theorem 2. Let H = ∑i,j Jijsisj +∑i φisi, and let H(t)0 = ∑i χ
(t)
i si, where χ(0)i = φi and si ∈

{0,1}. If we set χ(t+1)i = ∑j Jij⟨sj⟩ + φi, and let F (t)0 ∶= ⟨H⟩
H
(t)
0

− S(t), where S(t) is the entropy

of the system according to Hamiltonian H(t)0 . Then

F
(t+1)
0 ≤ F

(t)
0 (2)

From the definition of si, it is easy to see that ⟨si⟩H(t)0

= 1 × Pr(si = 1) + 0 × Pr(si = 0) = Pr(si =

1) = sigmoid(χ(t)), and the above statement is equivalent to the corollary below.

Corollary 2.1. The Pr(si = 1) that is an optimal solution to F
(t)
0 is Pr(si = 1) ∝

exp[∑j Jij⟨sj⟩Ht
0
+ φi], and the partition function can be found trivially.

This establishes the validity of our algorithm; during each iteration the update rule finds a better
solution to the full potential system (i.e. H with both unary and binary potentials). Through this
procedure, we can unroll our attention mechanism upto step k, and by letting the attentions interact
with one another, we are able to plot an interaction plot (section 3.3) that reveals how the network
decides to make the current output.

3 Experiments and Dataset
We compare our proposed method, i.e., Mean-Field Attention (MFA), with 5 baseline models:
RNN [16], LSTM [14], LSTM with Attention [3], Bidirectional LSTM [24] and VAE Attention [5] on
two different tasks: chunk counting task and sorting task. VAE Attention is a model specially designed
for increasing output diversity and so is not expected to be strong at benchmark tasks; however, we
found it interesting to compare with because our model is specially designed for providing better
interpretability to the deep attention models but not for competing on benchmark tasks.
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3.1 Chunk Counting Task
This is a task to demonstrate that MFA is capable of learning a task in which long range relations
need not be considered. Given a sequence of 0 and 1, we want to count the number of chunks of
ones, for example, if x = 0010010111 then we want to output y = 3. The training dataset consists of
random drawing of proper sequences of length 10 to 30 for about 100000 examples, and testing is
done on sequences of length 1 to 100, and so we see whether the model is capable of generalizing to
lengths shorter than and longer than the lengths it has observed. This error computed using MSE.

3.2 Sorting Task Table 1: Performance comparison (lower is bet-
ter, counting is in MSE, and Sorting is in NLL).
For MFAk, the subscript k refers to the maximum
number of iterations allowed in the model (see line
6 of algorithm 1).

Model Counting Sorting
RNN [16] 720.32 -2.34
LSTM [14] 145.30 -9.13
Bidirectional LSTM [24] 215.91 -8.53
LSTM with Attention [3] 571.64 -18.43
VAE Attention 198.23 -8.44
MFA1 106.62 -20.76
MFA5 76.13 -25.12

The task is to sort a sequence of integers from
the smallest to the largest. For example, if x =

[0,8,2,3,5,62,34] then we want to output y =

[0,2,3,5,8,32,62]. This task has become a stan-
dard testbed for attention networks [11, 12]; we ar-
gue that this task is an essential task to distinguish
between attention models and non-attention mod-
els because sorting problem has inherent complexity
n logn while a simple RNN structure only has com-
putation complexity n where n is the length of the
sequence, and so a network without attention can
never learn a proper sorting algorithm. The training
data consists of generated integer sequences of length
5 to 15 and testing is performed on sequence of length 1 to 25 in NLL loss. In principle, an RNN with
attention should be capable of solving this since its complexity is n2. From Table 1, our proposed
method outperforms other baseline models. While both the standard attention and MFA learned where
to focus, it looks like they have learned different strategies of focusing. Our model is also capable of
generalizing to sequences of unseen length. Using negative log-likelihood as the error metric, we plot
the performance of 3 selected models in Figure 1. A simple LSTM fails to learn perfectly even on
the lengths it has observed. When comparing LSTM attention with MFA, we notice that the error of
MFA grows slower as the sequence length increases.

(a) LSTM (b) LSTM w/ attention (c) MFA
Figure 1: The y axis is negative log-likelihood loss, and the x is the length of testing sequence.

3.3 Interaction Map of Attended Inputs

In this section, we show the interaction relationships between each of the inputs as a heat map, i.e.
we plot Jij . This offers new interpretability for deep learning models. The following example shows
Jij for a sorting problem. Notice that the output has temporal dimension t ∈ 1, .., T where T = 5, so
we expect to have 5 different Jij’s for each of the outputs. Notice that Jij has a graphical structure
and we plot a minimum spanning tree on Jij to show the most significant interaction edges.

4 Discussion
This paper proposes a new graphical attention model that adds an additional level of interpretability to
deep neural networks. Our method is GPU-efficient and end-to-end trainable. Our model outperforms
the baseline models, generalizes to longer unseen sequences and produces an attention comparable or
even better than the standard attention models. Future directions involve testing our model thoroughly
on larger datasets and using the newly allowed interpretability to shed light on interesting language
analysis tasks such as machine translation [4] and multimodal sentiment analysis [21] where the
interaction between inputs are complex and dynamic.
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(a) t = 1 (b) t = 2 (c) t = 3 (d) t = 4 (e) t = 5

Figure 2: Let white denote connection and black denote non-connection. In this problem, the input is
[2,9,11,1,17], and the network correctly sorts the input: [1,2,9,11,17]. At step 5, we see that all
the other inputs have strongest interaction with 17, which is output of the last time step; this suggests
that at this step, the network learned to not to consider any interaction between the rest of input. It
only needs to identify and output the largest element.
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A Proofs

Here the proof is presented in the physics style. For a standard treatment in the probabilitic graphical
model literature, see [27], also see [22] for a more physical treatment.

A.1 Theorem 1

The proof for theorem 1 is standard in many statistical mechanics tasks. We point the readers to [10]
for a clever and interesting proof in physics.

A.2 Proof for Theorem 2

Let H0 be the energy of a non-interacting system:

H0 =
N

∑
i=1

χi(si) (3)

where si are defined over the allowable states on the graph G = (V = {1, ...,N},E = (
N
2
)). In our

work, we consider a case where si is a Bernoulli variable ∈ {0,1}. The mean field approximation
finds the optimal approximation to the full interactive graph using a factorizable energy function.

The full Hamiltonian is a Hamiltonian with pairwise interaction (i.e. fully connected undirected
graph):

H(s1, ..., sN) =

N,N

∑
i,j

Jij(si, sj) +
N

∑
i

φ(si) (4)

Recalling that the free energy F0 =H − S =H +∑P logP is simply the energy of the system with
an entropic smoothing term. In this case, we have that the free energy

F0 = ∑
s1,...,sm

H(s1, sN)Q0(s1, ..., sN) + ∑
s1,...,sm

Q0(s1, ..., sN) logQ0(s1, ..., sN) (5)

where Q0 is the probability calculated with respect to the approximate Hamiltonian H0. Since H0

contains no binary potential, Q0 factorizes:

Q0(s1, ..., sN) =
1

Z
(

0N)
exp[−H0(s1, ..., sN)] =

N

∏
i=1

1

Z0
exp(−χi(si)) =

N

∏
i=1

q0(si) (6)

where Z0, Z
(N)
0 are the corresponding partition functions, and q0 are variational probability of state

si. Notice that, since we take si ∈ {0,1}, q0 = sigmoid(χi(1)), now plug into Equation 5 we obtain:

F0 =∑
i,j

∑
si,sj

Jijq0(si)q0(sj) +∑
i

∑
si

φi(si) +
N

∑
i=1

∑
si

q0(si) log q0(si) (7)

Now we want to find a way to update χi such that F0 is minimized after the update. We take the
derivative of F0 with respect to q0(si) and set it to 0 to obtain:

q0(si) =
1

Z0
exp[−χ

(t+1)
i (si)] (8)

where χ(t+1)i (si) can be identified to be ∑j∑sj Jij(si, sj)q0(sj) + φi(si). This finishes our deriva-
tion of the update rule (along with the corollary). Now since the q0 found this way is always a local
minimum of F0, we conclude that after each update:

F t+1
0 ≤ F0 (9)

As an additional remark, to arrive at our update rule (line 8 of Algorithm 1), one simply let
Jij(si, sj) → Jijsisj , φi(si) → φisi and χi(si) → χisi. Notice that we only used a very basic
function for this work, while the theorem above allows for the use of very complicated potential
functions such as that being parametrized by a neural network, and this flexibility and generality of
the proof allows for a much broader family of models to be chosen and experimented with.
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Algorithm 2 Encoder-Decoder({word}i)

1: Input: {wordi}i // The input sequence such as a sequence of words.
2: Initialize d0 = 0, t = 0
3: hi ← Encoder(wordi) // For a sentence of length T , i ∈ {1, ..., T}
4: while dt ≠ END do
5: t← t + 1
6: a

(t)
i ← Mean-field-Attention(∪Ti hi, dt)

7: c← ∑i aihi
8: dt = Decoder(dt−1, c)
9: Output: {dt}t // The sequence we want to output

B Algorithm for Encoder-Decoder Networks

See Algorithm 2. Notice that the algorithm is completely general and line 6 can be replaced by any
other attention mechanism.

C Additional Experiments

C.1 Learned Attention on the chunking task

We then plot the attention of our proposed model and LSTM with attention model for further
comparison. The attention of LSTM with attention model seems very imbalanced, suggesting that it
has learned an incremental strategy of using the attention mechanism, whereas our proposed model
learns to focus on the chunk of ones and it is very balanced.

(a) (b)
Figure 3: (a) LSTM with Attention for Chunk Counting. Notice that the traditional attention mecha-
nism outputs an attention that is highly imbalanced and hard to interpret. (b) MF-CRF Attention for
Chunk Counting, notice that the attention correctly focuses on the chunk of 1 in a balanced way.

C.2 Learned Attention on the sorting task, and the effect of iteration.

In Figure 4, we show some example learned attentions and show the effect of iteration at refining the
attention. We see that the output attention becomes

(a) (b) (c)
Figure 4: (a) LSTM with Attention for Sorting. (b) MFA attention for Sorting at iteration 1, we see
that it is mostly blurred. (c) MFA attention for Sorting at iteration k, notice that the attention becomes
much more accurate and sharpened than at iteration 1.
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C.3 Language Modeling Task

Besides the two artificial task, we present a preliminary experiment to study the performance of our
model on two real dataset, Penn Treebank [26] and WikiText-2 datasets. PTB is derived from articles
of the Wall Street Journal. It contains 929k training tokens and a vocab size limited to 10k words. It
is one of the most commonly used benchmarks in language modelling. WikiText-2 is roughly twice
the size of PTB, with 2 million training tokens and a vocab size of 33k. Due to the limited time and
resource we have for this task, the current result should not be regarded as a actual measure of the
performance of the model. In the near future we will finish this part of the experiment. Also notice
that at this stage our method is not yet directly comparable to the SOTA results, since our setup is
very basic to avoid confounding variables and so does not include most of standard tricks in the NLP
community.

Table 2: Language Modelling for Penn Treebank

Methods Perplexity Val
[29] 47.69 -
[19] 51.1 -
[23] 52.8 -
[33] 56.8 -
RNN 138.48 144.91

LSTM 127.66 136.82
MFA 109.76 118.21

Table 3: Language Modelling for WikiText-2

Methods Perplexity Val
[29] 40.68 -
[19] 44.3 -
[23] 52.0 -
[33] 64.1 -
RNN 164.69 178.01

LSTM 131.32 146.31
MFA 118.31 121.01

D Connection to CRF models

In this section, we briefly link our method to CRFs. In some sense, We are actually combining CRFs
with recurrent neural networks dynamically by using a fully connected CRF to model the structural
dependencies of the observed data and output the attention vector for the recurrent network. Let T
denote the temporal dimension, and in this case it refers to the length of the English sentence, since,
at every time step t, we feed in the next word in the sentence an LSTM encoder-decoder. The network
outputs an encoded state, ht for every time step t ∈ {1, ..., T}. In a network without attention, the
hidden state of the last time step is given to the decoder, which is usually another Recurrent neural
network (RNN). The decoder outputs a distribution over the target vocabulary (all possible French
words), and usually the word with the highest probability is chosen as the predicted translation. The
decoder continues to predict words until it outputs a special symbol that signifies the ending of the
translation.

We define the attention vector as a distribution p(s∣h, q) that is modeled as a conditional random
field (CRF), where s represents the position of the feature vector to be attended by our model, H is a
sequence of the hidden states of the encoder, and q is the hidden state of the decoder. In particular, s is
a vector of discrete latent variables [s1, ..., sm], and si is either 1 or 0 and has conditional probability
of being 1 with probability p(si∣h, q). In this sense, we model the structure of the hidden states as a
graph with m nodes, and the graph is parameterized with cliques whose potentials are defined by θC ,
where C denotes the clique.

9



The attention distribution is given by:

p(s∣H, q) =
1

Z
exp(∑

C

θC(s))

where C denotes the cliques in our graphical model, and we use this distribution as the weights to
the sequence memories we want to attend on. In this formulation, the context vector is simply the
expected value of x = sihi:

Ct =
m

∑
i

Pr(si = 1∣H, q)hi = Es∼p(s∣H,q)[x] (10)

Exact solution on some simple structures can be obtained through the forward-backward algorithm
[20] and the inside-outside algorithm [9]. While a mean field procedure can be used to improve
computation efficiency in the expense of exact inference. We build an undirected graph on the
hidden state H and then we can define states (of the CRF) si on each hidden state, and the states are
connected to each other through binary and unary potentials.
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