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Abstract

We introduce the Hilbert-Schmidt Independence Criterion (HSIC) Acquisition
Function (HAF), an acquisition function for Bayesian optimization that uses HSIC
to measure the statistical dependency to a distribution of interest. This enables
extensions of information theoretic acquisition functions (e.g. entropy search
variants) for more general models than just Gaussian Processes (GPs). HAF is also
differentiable, so points can be acquired via gradient search on the input space.
On a protein-DNA binding task we compare a particular instance of HAF with
Thompson Sampling and Expected Reward. Though preliminary results are not
impressive, we identify a major issue with the model used in this task and suggest
a future direction to improve upon this work.

1 Introduction

Bayesian optimization (BO) is a popular class of techniques to optimize a function fpxq which we are
allowed to query only a limited number of times and for which the derivatives are unavailable. f is
generally non-convex and observations are usually corrupted by noise as y “ fpxq`ε. Such functions
are common in robotics, machine learning, vision, biology, and many other areas [3, 4, 21, 16, 17, 20].

In BO, we use a model that outputs a predictive distribution for each x to approximate f . The
posterior distribution, after observing training data, guides the queries we make to f . In particular
we select points x that maximize some acquisition function (AF) αpxq. A large amount of research
has gone into figuring out what is a good α. Some popular acquisition functions include expected
improvement (EI) [12], and Gaussian Process Upper Confidence Bound (GP-UCB) [18].

Recently, acquisition functions based on information theory have gained prominence. These include
Entropy Search (ES) [9], and its variants Predictive Entropy Search (PES) [10] and Max-value
Entropy Search (MES) [22]. The ES family of acquisition functions enjoys a strong theoretical
motivation as well as good empirical performance. In practice, ES acquisition functions are used only
for GPs where closed forms for the mutual information are available. Many real world processes
have non-Gaussian observation noise or distributions (ex. RNA-seq read counts in biology, financial
markets [6], radio signal based distance estimation [14], etc.).

As the ES metrics require computing the mutual information between candidate points and the
distribution of interest, one option is to try to directly estimate the MI using just samples. However
this is known to be hard to do [15, 7]. While there has been recent effort to improve mutual
information estimation with learned estimators [2], in the Bayesian optimization setting, it would
require training an estimator for each candidate point for every acquisition. Furthermore, such an
estimator wouldn’t be differentiable, making it hard to acquire points via gradient descent.
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We propose using HSIC as an alternative way of measuring the dependence between the predictive
distribution of a candidate point and the distribution of interest [8]. As we only need samples for this
estimation, it can be applied to general models with non-analytic distributions; the target distribution
can also be non-analytic.

Our contributions are as follows: (1) We introduce the HAF which uses HSIC to determine the
dependence between the predictive distribution of a candidate point and any distribution of interest
which might be informative about the optimal point. (2) We test HAF with the max-value distribution
as the target. As this is an approximation of MES, we term this HAF-MES.

2 Background

We briefly introduce HSIC and our evaluation methods. The acquisition functions to which we
compare are described further in Appendix A.

2.1 Hilbert-Schmidt Independence Criterion (HSIC)

Suppose we have two (possibly multivariate) distributions X ,Y and we want to measure the depen-
dence between them. A well-known way to measure it is using distance covariance which, intuitively,
measures the covariance between the distances between pairs of samples from the joint distribution
PXY and the product of the marginal distributions PX , PY . HSIC can simply be thought of as
distance covariance except in a kernel space.

Formally, given a kernel k for X and a kernel l for Y , the HSIC between X ,Y is defined as follows

HSICpPXY , k, lq “ Ex,x1,y,y1rkpx, x
1qlpy, y1qs

` Ex,x1rkpx, x
1qsEy,y1rlpy, y

1qs ´ 2Ex,yrEx1rkpx, x
1qsEy1rkpy, y

1qss

where px, yq and px1, y1q are independent pairs drawn from PXY . Note that HSICpPXY q “ 0 if
and only if X ,Y are independent.

See Appendix B for the empirical HSIC estimator we use.

2.2 Evaluation criteria

At each acquisition t, we compute the ratio of ŷ˚t , the best point acquired so far, to the optimal point
y˚ which we term the regret ratio complement: rt “

ŷ˚t
y˚ (complement in that 1´ rt is the ratio of

the simple regret to y˚). We look at both which methods have the best (largest) value for r100 as well
as which have the largest area under the regret ratio complement curve (AURRCC) which shows how
well they do on average for all rt from t “ 1 to t “ 100.

We test our method on several discrete optimization problems involving the binding of short (8 base
pair) DNA sequences to different peptides from the protein binding microarray (PBM) dataset [1].
The goal is to find the DNA sequences with the highest affinity for the target. The 10 randomly
selected proteins that we test on are ARX, HOXD13, VSX1, POU4F3, MSX2, SIX6, BCL6, FOXC1,
ISX, and PAX6. For each protein (each separate dataset) we run BO 8 times, each time with a
different seed. Because the input space is finite and fairly small (about 32,000 unique inputs), we
maximize acquisition functions through exhaustive evaluation on the entire input space instead of,
e.g., by gradient ascent.

3 HSIC Acquisition Function (HAF)

Let f̂t be our probabilistic model the current step t. Suppose we have a distribution P t
D which is

informative about the optimal point. For example P t
D could be the distribution of the optimal location

(as in PES); the distribution of the optimal value (as in MES); or the distribution of the best few
values (generalizing MES). Intuitively, we want to find the point xt to query which would give us the
most information about this distribution.
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Formally, the HAF is

αHAF pxqt “ argmax
x

HSICpDX, k, lq

where DX are samples pd1, x1q, . . . , pdm, xmq from the joint distribution of P t
D and P t

X where P t
x

is the predictive distribution of x at iteration t as given by the model f̂t. k, l are the kernels for
g, x respectively. For this paper, we take both k, l to be a mixture of rational quadratic kernels; see
Appendix C for more details.

4 Probabilistic Model

We use a deep ensemble as outlined in [13] (without the adversarial smoothing) with a very simple
base model consisting of a single 100-node hidden layer with ReLU activation as in [11]. This is to
allow our model to be trained more effectively even on only a few acquired points. Our ensemble
consists of 250 members so that we can get 250 samples from the joint distribution PDX .

After each acquisition, we reset each model in the ensemble to a random initialization again and then
retrain on all of the acquired data. We always train for 50 epochs.

5 HAF-MES

We use the max-value distribution as D, the target distribution, for this work. Because this is
analogous to MES, we refer to this specific instantiation of HAF as HAF-MES.

In Algorithm 1 we describe how we acquire points using HAF-MES as the acquisition function for
an ensemble of neural networks.

Algorithm 1 HAF-MES
1: Input:
2: D “ td1, . . . , dmu: the maximum values for each member of the ensemble, where m is the

size of the ensemble
3: X “ tx1, . . . , xnu: the mean prediction of each ensemble member on each input point, where
n is the size of the search space and each xi is a vector of size m

4: k, l: the kernels for D,X (both the same rational quadratic kernel mixture)
5: B “ tu
6: repeat
7: SB “ tpdi, x

1
i , . . . , x

|B|
i qumi“1

8: x1 “ argmaxxPX HSICpSBYtxu, k, lq
9: B “ B Y tx1u

10: until |B| “ batch size

Note that for all results in this paper, we only use a batch size of 1.

6 Results

For each peptide-binding task, we compute rt for 1 ď t ď 100; figure 1 shows the curves this
generates for one peptide. To summarize this information, as mentioned earlier, we look at which
acquisition function does the best at the end and which is the best on average (as measured by the
area under this curve). Table 1 shows the average ranking of the three acquisition functions tested.

It’s apparent that our method doesn’t provide the better-informed exploration for which we would
hope. We believe this is largely because the uncertainty estimates of our model are calibrated
particularly poorly on the high value points. Thus the empirical max-value distribution which
HAF-MES is trying to gain information about places negligible probability on the true max value,
so the information we gain is not particularly useful. Additionally, at least for these models and
datasets, there is low correlation between the HSIC of a point and the reduction in uncertainty about
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Figure 1: Regret ratio complement curves for three acquisition functions. The dark lines are mean
values and the shaded regions an area of one standard deviation on either side of the mean. TS =
Thompson sampling, ER = expected reward.

Table 1: Rankings of the acquisition functions (smaller is better) according to two metrics. “Last” is
r100. Mean values across the eight random seeds are used to compute the rankings.

Ac. Function AURRCC-Rank Last-Rank

ER 2.2 2.2
UCB (β “ 1) 2.4 2.3
TS 2.2 2.5
HAF-MES (ours) 3.2 3.0

the max-value distribution from acquiring that point. Given the non-uniform costs of Bayesian
optimization, where we care more about good predictions on high-value points than others, we hope
that future work applying methods as in [5] to focus learning around high-utility points could improve
the distributions around the high-value points and make HAF-MES more competitive.

7 Conclusion

We present HAF, a generic acquisition function which allows information-based acquisitions in
models with non-analytic predictive distributions. We test HAF-MES, a specific instance of HAF that
is analogous to MES, and discuss its shortcomings as presently implemented. We conclude with a
direction for future work that we hope can improve the performance of HAF.
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A Acquisition Functions

Let D be the set of datapoints observed so far. In general in Bayesian optimization, there is not a
restriction that a point can only be acquired a single time. Because observations are noisy, it may be
worth sampling an important point multiple times. In the specific setting of our test datasets, however,
we only have a single label for each input. Thus, even though the underlying function is noisy, we
only allow each point to be acquired once.

• Thompson Sampling (TS) [19]: αTSpxq “ argmaxx Erfpxq|θs where θ is a parameter
set for your model drawn from the posterior distribution over the parameters (θ „ ppθ|Dq).
For our specific model choice (ensemble of neural networks), sampling a set of parameters θ
means sampling (uniformly at random, though one could also introduce a weighting scheme
based on performance) a model from the ensemble.

• Gaussian Process-Upper Confidence Bound (GP-UCB) [18]: αUCBpxq “

argmaxx µpfpxqq ` β ¨ σpfpxqq where µ, σ are the mean and standard deviation of the
posterior predictive distribution and β is a hyperparameter. When β “ 0, the acquisition
function is also called Expected Reward (ER).

• Max-value Entropy Search (MES) [22]: αMESpxq “ argmaxx Iptx, yu; y
˚|Dq where I

is the mutual information and y˚ is the distribution of the optimal value under the current
model.

B Empirical Estimates for HSIC

The empirical estimator of HSICpPXY q is

HSICpZ, k, lq “

1

m2

m
ÿ

i,j

kpxi, xjqlpyi, yjq `
1

m4

m
ÿ

i,j,q,r

kpxi, xjqlpyq, yrq ´ 2
1

m3

m
ÿ

i,j,q

kpxi, xjqlpyi, yqq

“
1

m2
trpKHLHq (1)

where Z “ tpx1, y1q, . . . , pxm, ymqu are a series of independent samples from PXY , and m is the
number of samples. K,H,L P Rm,m where Kij “ kpxi, xjq, Lij “ lpyi, yjq, H “ I ´ 1

m11T and
1 is an mˆ 1 vector of ones. K,L are the kernel distance matrices of X,Y , respectively, whereas H
centers the data.

C Kernels

The choice of the kernel function can affect empirical performance, especially in extremely high
dimensional settings, and it is not uncommon to learn a kernel (using a high capacity ML model like
neural networks [23]) in such cases. However the dimensions we deal with in this paper are on the
order of a few tens and thus we simply use a mixture of rational quadratic kernels for k which has
been used successfully with kernel based statistical dependency measures in the past. The rational
quadratic kernel is defined as

kRQpx,x
1q “ σ2

ˆ

1`
px´ x1qT px´ x1q

2al2

˙´a

.

The parameters we use are σ “ 1, l “ 1 and a P t0.2, 0.5, 1, 2, 5u. We use the same kernel mixture
for l as well. We did not perform any fine tuning of the kernel parameters and all our experiments in
this paper use this kernel.
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