Conditional Graph Neural Processes: A Functional
Autoencoder Approach

Marcel Nassar; Xin Wang; Evren Tumer
Artificial Intelligence Products Group, Intel Corporation
{marcel .nassar, xin3. wang, evren. tumer}@intel.com

Abstract

We introduce a novel encoder-decoder architecture to embed functional processes
into latent vector spaces. This embedding can then be decoded to sample the
encoded functions over any arbitrary domain. This autoencoder generalizes the
recently introduced Conditional Neural Process (CNP) model of random processes.
Our architecture employs the latest advances in graph neural networks to process
irregularly sampled functions. Thus, we refer to our model as Conditional Graph
Neural Process (CGNP). Graph neural networks can effectively exploit “local”
structures of the metric spaces over which the functions/processes are defined. The
contributions of this paper are twofold: (i) a novel graph-based encoder-decoder
architecture for functional and process embeddings, and (ii) a demonstration of the
importance of using the structure of metric spaces for this type of representations.

1 Introduction

A key question in machine learning and information theory is how to learn to represent a data
example. Autoencoders (AEs) are a popular form of representation learning algorithms composed
of an encoder that maps the input into a code that represents it (according to some criterion) and a
decoder that interprets this code and reproduces the corresponding input [L]. The architecture of an
AE is determined by the type of data it encodes: for instance, convolutional neural networks are a
typical choice for image data. However, it is not clear how these constructs can be used to model
more abstract data such as functions. For example, how can we learn a representation for a collection
of sinusoidal functions (fundamental frequencies) or band-limited signals (Fourier) in a data-driven
manner?

While deep neural networks have achieved great success in recent years, training models that can
generalize well to novel inputs requires a large amount of data. Meta-learning techniques have been
proposed to incorporate adaptation into a network so that it can accurately generalize to inputs that
span domains absent in the training dataset.

One recent approach to solving this problem attempts to combine Gaussian processes with neural
networks[2} 3]]. Gaussian processes (GP) are a powerful Bayesian technique that can interpolate and
extrapolate an underlying process given a set of observations. It learns the second order statistics
of the observed data points to an assumed statistical model of the function in order to generate the
predictions at a given set of positions. Though highly flexible, this method can be computationally
expensive for inference. Neural process (NP) models replace the computationally expensive portion
of the GP model with a neural network that is trained on many samples taken from a distribution of
functions[2} 3]]. NPs, like GPs, are able to capture the statistical properties of the sampled functions in
the training set and generalize to fit points sampled from previously unobserved function realizations.

*Equal contribution.

Third workshop on Bayesian Deep Learning (NeurIPS 2018), Montréal, Canada.

Bipartite Graph Conv (b) Context Latent
representation

Vg U3 Ug Us U7 U4 Uy Vs Vg o~ A

Figure 1: @) Bipartite graph convolution. @) Conditional Graph Neural Process. Irregularly sampled points
(circles) are processed by a graph neural net encoder. Unlike a CNP, graph convolution is performed over
neighborhoods of the input (dashed outlines). A graph pooling operation reduces the input to a D-dimensional
latent representation, which is then "decoded" by a graph neural net decoder to generate an approximation of the
function.

Graph convolution networks (GCN) [4, 5] have expanded the power of deep neural networks (DNN)
into the space of data that can be described through connected graphs (e.g. social networks, knowledge
graphs). Extending DNNs to operate on graph data structures makes them potential solutions to a
whole new set of problems. Here, we expand the NP paradigm by employing GCNs and show that
data can be embedded in a graph structure to improve learning of functions.

2 Conditional Graph Neural Processes

Functional Autoencoders using Graph Neural Networks Given a family of functions F = {fp}
(fo : X = Y) and a dataset of different samples from each of these functions D = {D;}, where
Dr = {(zi,y; = fg(a:i))}fvjo for some parameter 6, we would like to extract a representation
summarizing each dataset Dy by a representation 7. A similar setup for non-function data was
explored in [[6], where each dataset is a collection of samples and the learner’s goal is to obtain a
generative model for each.

In order to process irregularly sampled data such as given in each Dy, we employ graph neural
networks and in particular bipartite graph convolutions introduced in [[7]. Graph neural networks
allow for efficient exploitation of the metric space by leveraging the induced metric as a relationship
between two samples. The bipartite graph convolution operation (illustrated in Fig[Ta]is defined over
a bipartite graph BG(V;,V,, E)

986 (Vo) = red({Woi filvi € 0g(vo), fi = s(vi)}), Yv, € Vo)

where red is a reduction operation and dgp(v,) = {v; € V;|(vi,v,) € £} is the neighborhood of the
node v, in BG. Our final functional autoencoder architecture is illustrated in Fig. @

Conditional Random Processes A general random process defines a joint probability distribution
over an ordered set of random variables. A conditional neural process, on the other hand, uses the
observed samples to estimate the density parameters for the targets [8]. This can be viewed as a more
general case of the functional autoencoder model. While the functional autoencoder uses a graph
neural network to output predicted values at the target points, the process version outputs a variance
in addition to the mean value to characterize the uncertainty around the target point; i.e., if gg(+)
represents the function induced by the graph neural network then p;, o; = gg(x;) where p;, o; are
the mean and variance around the mean prediction.

Conditional Neural Processes The CNP model described in [2} 8] uses the following to compute its
representation:
ri =mlp (@i, Y;)
r=red{r;}n
iy op =mlp (x¢,7)

In other words, each point of the input is processed independently, then all the encoded points (r;)
are aggregated. The function is approximated at the target points (x;) by the decoder which takes

Table 1: Test NLL and MSE of CNP and GNCP models

Model | Test NLL | Test MSE
CNP (D = 8) 93.52 +8.32 | 0.5517 £ 0.0120
CGNP (D =8,p=10.7) | 56.42 0.5351

CGNP (D =8,p=0) 69.02 0.5479

the aggregated signal concatenated with the target points as input. Upon further inspection, a CNP
can be viewed as a special case of the CGNP with an unstructured graph, where each node only
connects to its self. As a result the CNP acts like a graph that is constructed using architectures that
enforce invariance over transformations such as ordering [9]. Here we argue that the graph structure
is important for generating a better representation of the data by using the local structure that is
captured by the neighborhood of the graph nodes.

3 Experimental results

Regression task We demonstrate CGNP with a simple 1-D function regression task, matching
the protocol in [10]. Target functions are generated by a Gaussian process with an exponentiated
quadratic kernel of length 0.4. A training example ([X.,X¢], [Y¢, ¥¢]) consists of N. € {3,---,10}
context and N; € {2,---,10} target points, independently and uniformly sampled from interval
x € [—2,2] for a specific function instance. The training set has 2 x 10° batches, each batch contains
64 examples with (NN, N;) fixed across examples in a batch. The test set has 1 x 10* examples, each
comprised of 400 points evenly spaced in interval [—2, 2], of which a randomly chosen subset of
N, € {3,---,10} points were used as context, and the rest N; = 400 — N, points as target.

Models The baseline CNP model is taken from [10] with the encoder and decoder composed of
3-layer and 2-layer multi-layer perceptron (MLP), respectively. The parameter D represents the
dimensionality of the latent representation. Furthermore, we added pre-activation batch-normalization
layers, which proved to improve model performance. Our GCNP model follows the published CNP
architecture in terms of the encoder and decoder depths (3 and 2) and width (D), but replaces the
MLP networks with bipartite graph convolutional networks [7]. The radius of graph connection
neighborhood is set to be p = 0.7. For comparison we included results for a disconnected CGNP (i.e.
p = 0), which reduces the CGNP to a CNP equivalent.

Models were trained on the entire training set with Adam optimizer at learning rate 10~3, and tested
for negative log-likelihood (NLL) loss and prediction mean squared error (MSE) on the test set.

Results We list all test metrics of the three models for the regression tasks in Table [I} We used latent
feature dimension D = 8 for all models. We did 5 runs of CNP model, and report mean + standard
deviation as a baseline range.

A CGNP model with neighborhood radius p = 0.7 significantly improved test performance, and
further setting p = 0 turned CGNP into a special case (i.e. CNP) with edgeless (i.e. disconnected)
graphs, performance returned to roughly the baseline CNP level.

4 Discussion

Above we have demonstrated the power of graph convolutions to incorporate local structure of context
points to improve the performance of CNPs for functional fitting. Thus, CGNP breaks free from
CNP’s constraint of permutation-invariance in aggregating encoded contexts, making it able to exploit
meaningful structure inherent in the context. As a special case, by making the graph neighborhoods
used in the convolutions include only a single node, the CGNP reduces to a CNP.

This generality of CGNP over CNP is conceivably useful in modeling non-stationary data, such as
those generated by Gaussian processes with time-dependent kernels. Local structure of such functions
over time can no longer be captured at a global level but will be required to interpolate the function in
local neighborhoods.

References

[1] Diederik P Kingma and Max Welling. Auto-Encoding Variational Bayes. 12 2013. URL
https://arxiv.org/abs/1312.6114,

[2] Marta Garnelo, Dan Rosenbaum, Chris J. Maddison, Tiago Ramalho, David Saxton, Murray
Shanahan, Yee Whye Teh, Danilo J. Rezende, and S. M. Ali Eslami. Conditional Neural
Processes. 2018. URL http://arxiv.org/abs/1807.01613.

[3] Marta Garnelo, Dan Rosenbaum, Chris J. Maddison, Tiago Ramalho, David Saxton, Murray
Shanahan, Yee Whye Teh, Danilo J Rezende, and S M Ali Eslami. Neural Process. 2018.
ISSN 1938-7228. URL https://arxiv.org/pdf/1807.01622.pdfhttp://arxiv.org/
abs/1807.01613.

[4] Michaél Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional Neural Networks
on Graphs with Fast Localized Spectral Filtering. 2016. URL http://arxiv.org/abs/1606!
09375.

[5] Thomas N. Kipf and Max Welling. Semi-Supervised Classification with Graph Convolutional
Networks. 2016. URL http://arxiv.org/abs/1609.02907.

[6] Harrison Edwards and Amos Storkey. Towards a Neural Statistician. 6 2016. URL http:
//arxiv.org/abs/1606.02185https://arxiv.org/pdf/1606.02185.pdf.

[7] Marcel Nassar. Hierechical Bipartite Graph Convolutional Networks. NeurlPS Workshop on
Relational Representation Learning, 2018.

[8] Marta Garnelo, Dan Rosenbaum, Chris J Maddison, Tiago Ramalho, David Saxton, Murray
Shanahan, Yee Whye Teh, Danilo J Rezende, and S M Ali Eslami. Conditional Neural Processes.
ICML, 2018.

[9] Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Ruslan Salakhutdinov,
and Alexander Smola. Deep Sets. NIPS, 3 2017.

[10] DeepMind. deepmind/conditional-neural-process, 2018. URL https://github.com/
deepmind/conditional-neural-process.

https://arxiv.org/abs/1312.6114
http://arxiv.org/abs/1807.01613
https://arxiv.org/pdf/1807.01622.pdf http://arxiv.org/abs/1807.01613
https://arxiv.org/pdf/1807.01622.pdf http://arxiv.org/abs/1807.01613
http://arxiv.org/abs/1606.09375
http://arxiv.org/abs/1606.09375
http://arxiv.org/abs/1609.02907
http://arxiv.org/abs/1606.02185 https://arxiv.org/pdf/1606.02185.pdf
http://arxiv.org/abs/1606.02185 https://arxiv.org/pdf/1606.02185.pdf
https://github.com/deepmind/conditional-neural-process
https://github.com/deepmind/conditional-neural-process

	Introduction
	Conditional Graph Neural Processes
	Experimental results
	Discussion

