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Abstract

We propose a unifying view of two different families of Bayesian inference al-
gorithms, SG-MCMC and SVGD. We show that SVGD plus a noise term can be
framed as a multiple chain SG-MCMC method. Instead of treating each parallel
chain independently from others, the proposed algorithm implements a repul-
sive force between particles, avoiding collapse. Experiments in both synthetic
distributions and real datasets show the benefits of the proposed scheme.

1 Introduction

Bayesian computation lies at the heart of many machine learning models in both academia and
industry. Thus, it is of major importance to develop more efficient approximation techniques that
tackle the intractable integrals that arise in large scale Bayesian problems. Recent developments in
Bayesian techniques applied to large scale datasets or deep models include variational approaches
such as Automatic Differentiation Variational Inference (ADVI) [1] and Stein Variational Gradient
Descent (SVGD) [2], or sampling approaches such as Stochastic Gradient Markov Chain Monte
Carlo (SG-MCMC) [3]. While variational techniques enjoy faster computations than the latter
approaches, they rely on optimizing a family of posterior approximates that may not contain the
actual posterior distribution. In this work, we draw on a similitude between SG-MCMC and SVGD
in order to propose an efficient sampling algorithm.

Any competing MCMC algorithm should verify the following list of properties: scalability (we resort
to SG-MCMC methods since at each iteration they may be approximated to just require a minibatch
of the dataset), convergence to the true posterior and flexibility (since we provide a parametric
formulation of the transition kernel it is possible to adapt other methods such as Hamiltonian Monte
Carlo [4] or the Nosé-Hoover thermostat method [5]).

Our contributions are summarized in what follows:

• We provide a unifying hybrid scheme of SG-MCMC and SVGD algorithms, satisfying the
previous list of requirements.

• Based on it, we can develop new SG-MCMC schemes that include repulsive forces between
particles.

2 Background and related work

The celebrated work of [3] proposed a general formulation of a continuous-time Markov process that
converges to a target distribution π ∝ exp(−H(z)) with z ∈ Rd. It is based on the Euler-Maruyama
discretization of the generalized Langevin dynamics:

zt+1 ← zt − εt [(D(zt) + Q(zt))∇H(zt) + Γ(zt)] +N (0, 2εtD(zt)), (1)

where εt is the stepsize, D(z) is a diffusion matrix, Q(z) is a curl matrix and Γ(z)i =∑d
j=1

∂
∂zj

(Dij(z) + Qij(z)) is a correction term. Hence, to obtain any valid SG-MCMC algorithm
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we simply have to choose the dimensionality of z (i.e., if we augment the space with auxiliary
variables as in HMC), D and Q. For instance, the popular Stochastic gradient Langevin dynamics
(SGLD) [6] is obtained when D = I and Q = 0. In addition, the Hamiltonian variant can also be
recovered if we augment the state space with a d−dimensional momentum term z̄ = (z,p). Then,

we set D = 0 and Q =

(
0 −I
I 0

)
.

On the other hand, SVGD [2] frames posterior sampling as an optimization process, in which a
set of K particles {zi}Ki=1 is evolved iteratively via the velocity field zi,t+1 ← zi,t + εφ(zi,t).
Assuming q is the particle distribution at iteration t and q[εφ] is the distribution after an update
(t+ 1), then, the optimal choice of the velocity field φ can be framed into the optimization problem
φ∗ = arg maxφ∈F{− d

dεKL(q[εφ]‖p)}, i.e., φ is chosen so as to maximize the decreasing rate on the
KL divergence between the particle distribution and the target. When F is a RKHS, [2] showed that
the optimal velocity field is given by

zi,t+1 ← zi,t − εt
1

K

K∑
j=1

[
k(zj,t, zi,t)∇H(zj,t) +∇zj,tk(zj,t, zi,t)

]
, (2)

where the RBF kernel k(z, z′) = exp(− 1
h‖z − z

′‖2) is typically adopted. Note that the gradient
term∇zj,tk(zj,t, zi,t) acts as a repulsive force that prevents particles from collapsing. [7] started to
consider similitudes between SG-MCMC and SVGD, though in this work we propose the first hybrid
scheme between both methods.

3 Proposed scheme

We use the framework introduced in [3] in an augmented state space z = (z1, z2, . . . ,zK) to obtain
a valid posterior sampler that runs multiple Markov chains with interaction. This multiple particle
version of SG-MCMC is given by the following equation

zt+1 ← zt − εt [(K + Q)∇ + Γ] + ηt, ηt ∼ N (0, 2εtK). (3)

Now, zt = (z1,t . . . zK,t)
> is a Kd-dimensional vector defined by the concatenation of K particles.

∇ ∈ RK×d×1 so that (∇)i,: = ∇H(zi,t)
1. K ∈ RKd×Kd is an expansion of the D matrix,

accounting for distance between the particles and Q ∈ RKd×Kd might be used if a Hamiltonian
variant is to be adopted. Γ is the correction term from the framework of [3]. Note that K, Q and Γ
can depend on the state zt (an example will be given below), but we do not make it explicit in order
to ease the notation.

Recall that, in matrix notation, the update rule for SVGD can be expressed as

zt+1 ← zt −
εt
K

(
K∇ + Γ

)
(4)

where K ∈ RK×K so that (K)ij = k(zi, zj), ∇ ∈ RK×d and zt ∈ RK×d. Casting the later matrix
as a tensor ∇ ∈ RK×d×1 and the former one as a tensor K ∈ R(K×d)×(K×d) by broadcasting
along the second and fourth axes, we may associate K with SG-MCMC’s diffusion matrix D over a
Kd−dimensional space. Appendix A shows the precise definition of the matrix K.

From this perspective, Eq. (4) (SVGD) can be seen as a special case of Eq. (3) when the curl matrix
Q = 0 and the noise term is added. We shall refer to this perturbed variant of SVGD as Parallel
SGLD plus repulsion (SGLD+R):

zt+1 ← zt −
εt
K

(K∇ + Γ) + ηt, ηt ∼ N (0, 2εtK/K). (5)

Since matrix K is definite positive (it was constructed from the RBF kernel), we may now use the
key result from [3] (Theorem 1) to derive the following property:

Proposition 1. SGLD+R (or its general form, Eq. (3)) has π(z) =
∏K
k=1 π(zk) as stationary

distribution, and the proposed discretizations are asymptotically exact as εt → 0.

1Though ∇ ∈ RKd×1 to allow multiplication by K+Q, we reshape it as ∇ ∈ RK×d×1 to better illustrate
how it is defined.
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Shown that SVGD plus a noise term can be framed as a SG-MCMC method, we may now explore
the design spaces of the K and Q matrices. However, for the rest of the paper we resort to the case
Q = 0 (i.e., we will just experimentally study SGLD with repulsion between multiple particles).

Algorithm 1 shows how to set it up. Finally, our proposed method is amenable to parallelization,
since the mini-batch setting from SG-MCMC can be adopted (see Appendix B).

4 Experiments

This Section describes the experiments developed to empirically test the proposed scheme. Code
will be released at https://github.com/vicgalle/sgmcmc-force and we rely on Tensorflow-
probability [8] as the main package.

Synthetic distributions. We test our proposed scheme in the following distributions.

• Mixture of Exponentials (MoE). Two exponential distributions with different scale param-
eters λ1 = 1.5, λ2 = 0.5 and mixture proportions π1 = 1/3, π2 = 2/3.

• Mixture of 2D Gaussians (MoG). A grid of 3×3 equally distributed isotropic 2D Gaussians,
see Figure 2(d) for the density plot.

We compare two sampling methods, SGLD with K parallel chains, and our proposed scheme,
SGLD+R. Note that the only difference in these two sampling algorithms is that for the former K = I
whereas the latter accounts for repulsion between particles. Table 1 reports the effective sampling
size metrics for each method using K = 10 particles. Note that while ESS/s are similar, the repulsive
forces in SGLD+R makes for a more efficient exploration, resulting in much lower estimation errors.
Figures 1 and 2 seem to confirm this fact. In addition, even when increasing the number of particles
K, SGLD+R achieves lower errors than SGLD (see Fig. 3).

ESS ESS/s Error of E [X]
Distribution SGLD SGLD+R SGLD SGLD+R SGLD SGLD+R
MoE 44.3 59.159.159.1 51.5 61.061.061.0 0.39 0.140.140.14
MoG 151.3 169.5169.5169.5 36.336.336.3 32.5 1.42 1.191.191.19

Table 1: Results for the two synthetic distributions task

(a) Estimation of E [X]

SGLD+R

SGLD

(b) Estimation of E
[
X2

]
Figure 1: Evolution of estimation during the MoE experiment. 10 particles are used and black line
depicts the exact value to be estimated

Bayesian Neural Network. We test the proposed scheme in a suite of regression tasks using a
feed-forward neural network with 50 hidden units and ReLu activations. The datasets are taken
from the UCI repository. We use minibatches of size 100, but while we use the same experimental
setting as [2], we simply use SGD instead of Adagrad, since it is not clear that Proposition 1 can be
extended to the non-SGD case. As before, we compare SGLD and SGLD+R, reporting average root
mean squared error and log-likelihood over a test set in Table 2. We observe that SGLD+R typically
outperforms SGLD. During the experiments, we noted that in order to reduce computation time,
during the last half of training we could disable the repulsion between particles without incurring in
performance cost.
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(a) Particles from prior (b) SGLD dynamics (c) SGLD+R dyn. (d) Density of MoG

Figure 2: Evolution of the particles during the MoG experiment

Avg. Test RMSE Avg. Test LL
Dataset SGLD SGLD+R SGLD SGLD+R
Boston 2.392± 0.018 2.295± 0.0172.295± 0.0172.295± 0.017 −2.551± 0.018 −2.575± 0.007
Kin8nm 0.104± 0.001 0.104± 0.001 0.826± 0.005 0.831± 0.006
Naval 0.008± 0.000 0.008± 0.000 3.379± 0.011 3.428± 0.0193.428± 0.0193.428± 0.019
Protein 4.810± 0.003 4.794± 0.0034.794± 0.0034.794± 0.003 −2.991± 0.000 −2.987± 0.001−2.987± 0.001−2.987± 0.001
Wine 0.522± 0.004 0.514± 0.0040.514± 0.0040.514± 0.004 −0.765± 0.008 −0.750± 0.007−0.750± 0.007−0.750± 0.007
Yacht 0.942± 0.015 0.894± 0.0290.894± 0.0290.894± 0.029 −1.211± 0.020 −1.172± 0.026

Table 2: Results for the BNN experiments

5 Conclusions and further work

This paper shows how to generate new SG-MCMC methods consisting in multiple chains plus
repulsion between the particles. Instead of the naïve parallelization, in which a particle from a chain
is agnostic to the others, we showed how it is possible to adapt another method from the literature,
SVGD, in order to account for better exploration of the space, avoiding collapse between particles.
Further work shall explore different matrices K and Q in order to further accelerate the sampling
process.
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Algorithm 1 Bayesian Inference via SGLD+R

Input: A target distribution with density function π(z) ∝ exp(−H(z)).
Output: A set of particles {zi}MK

i=1 that approximates the target distribution.
Sample initial set of particles from prior: z0

1 , z
0
2 , . . . z

0
K ∼ π(z).

for each iteration t do

zt+1
i ← zti − εt

1

K

K∑
j=1

[
k(ztj , z

t
i)∇zt

j
H(ztj) +∇zt

j
k(ztj , z

t
i)
]

+ ηti (6)

where ηti is the noise for particle i defined as in Eq (5).
After a burn-in period, start collecting particles: {zi}NKi=1 ← {zi}

(N−1)K
i=1 ∪ {zt+1

1 , . . . ,zt+1
K }

end for

[8] Joshua V Dillon, Ian Langmore, Dustin Tran, Eugene Brevdo, Srinivas Vasudevan, Dave Moore, Brian Patton,
Alex Alemi, Matt Hoffman, and Rif A Saurous. Tensorflow distributions. arXiv preprint arXiv:1711.10604,
2017.

A Construction of K

The big matrix K from Eq. (5) is defined as a permuted block-diagonal matrix consisting of d
repeating kernel matrices K:

K =


K

K
. . .

K

P,

with P being the Kd×Kd permutation matrix

P =



1
1 . . .

1
1

1 . . .

1
. . . . . . . . . . . .

1
1 . . .

1



.

The permutation matrix P rearranges the block-diagonal kernel matrix in order to match with the
dimension ordering of the state space zt = (z1,t . . . zK,t)

>. Note that with this convention, K∇
is equivalent to K∇, only differing in the shape of the resulting matrix. This allows us to frame
SVGD plus the noise term as a valid scheme from the SG-MCMC framework of [3], using the
Kd-dimensional augmented state space.

B Implementation details

Algorithm 1 details SGLD+R. Note the proposed scheme preserves the efficient properties of the
original SG-MCMC and SVGD algorithms. The main computational bottleneck lies in the evaluation
of the gradient∇z log π(z), which can be troublesome in the big data setting such as when π(z|D) =
p(z)ΠN

i=1p(Dk|z). We then may approximate the true gradient with an unbiased estimator taken
along a minibatch of datapoints Ω ⊂ {1, 2, . . . , N} in the usual way:
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∇z log π(z|D) ≈ ∇z log p(z) +
N

|Ω|
∑
i∈Ω

∇z log p(Di|z).

C Experiment details

Synthetic distributions

For the Mixture of Exponentials experiment, the pdf used is

p(z) =

2∑
i=1

πiλi exp(−λiz).

Note that the exact value of the first and second moments can be computed using

E [zn] =

2∑
i=1

πi
n!

λni

with n ∈ N. Since z > 0, in order to use the proposed scheme, we reparameterize using the log
function. The pdf of the transformation y = log(z) can be computed using

p(y) = p(log−1(y))|D log−1(y))|.

For the Mixture of Gaussians experiment, we set Σ = diag(0.1, 0.1) and
place each of the nine Gaussians centered at each each of the following points
{(−2,−2), (−2, 0), (−2, 2), (0,−2), (0, 0), (0, 2), (2,−2), (2, 0), (2, 2)}.
For the computation of the error of E [X] in Table 1, we sample for 500 iterations after discarding
the first 500 iterations as burn-in, and we collected samples every 10 iterations to reduce correlation
between samples. For the MoE case we used 10 particles whereas for the MoG task we used 20
particles due to the increased number of modes.

Bayesian Neural Network

Learning rate was chosen from a grid {1e− 5, . . . , 1e− 3} validated on another fold. The number of
iterations was set to 2000 in every experiment. As before, to make predictions we collect samples
every 10 iterations after a burn-in period. 20 particles were used for each of the tested datasets.

D Additional results

(a) Estimation of E [X] (b) Estimation of E
[
X2

]
Figure 3: Evolution of estimation during the MoE experiment. 100 particles are used and black line
depicts the exact value to be estimated
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