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Abstract

Deep neural networks(NNs) have achieved impressive performance, often exceed
human performance on many computer vision tasks. However, one of the most
challenging issues that still remains is that NNs are overconfident in their predic-
tions, which can be very harmful when this arises in safety critical applications. In
this paper, we show that predictive uncertainty can be efficiently estimated when
we incorporate the concept of gradients uncertainty into posterior sampling. The
proposed method is tested on two different datasets, MNIST for in-distribution
confusing examples and notMNIST for out-of-distribution data. We show that our
method is able to efficiently represent predictive uncertainty on both datasets.

1 Introduction

Recent deep neural networks (NN) methods have achieved human-level or superhuman performance
at various tasks in computer vision, natural language processing, and robotics. But they often fail
to estimate predictive uncertainty which can be crucial for some tasks such as medical diagnosis
or autonomous driving, and tend to be overconfident even when their predictions are incorrect. In
order for these critical applications to be successfully employed, they must be able to provide how
certain they are about cancer detection and road sign recognition [2]. Bayesian NNs, which find
a posterior distribution over network parameters, are the state-of-the-art methods for estimating
predictive uncertainty [17, 16].

1.1 Bayes’s Theorem

p(θ|D) =
p(D|θ) p(θ)

p(D)
=

p(D|θ) p(θ)∫
p(D|θ) p(θ) dθ

(1)

p(D|θ) is the likelihood of the occurrence of dataset D given a model with parameters θ, p(θ) the
prior, and p(D) the data distribution. Bayesian NNs compute the posterior distribution over the
parameters to estimate predictive uncertainty. However exact Bayesian inference is not feasible for
NN since computing marginal likelihoods in high dimension is analytically intractable, thus we need
to approximate the inference problem.

1.2 Related Works

There have been two different major approaches for the approximation. One is variational Bayesian
methods, which approximate Bayesian inference by introducing simpler, tractable distribution q(θ)
to approximate posterior distribution [13, 3, 11, 4, 10]. This method minimizes the Kullback-
Leibler (KL) divergence between p and q, KL(q(θ)||p(θ|D)), which is optimized by maximizing the
evidence lower bound (ELBO). On the other hand, Markov Chain Monte Carlo (MCMC) methods
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have been successfully applied to Bayesian NNs. MCMC is non-parametric and asymptotically exact
which iteratively draw samples from unknown true distribution to approximate expectation [8, 9, 12].
However, traditional MCMC methods require the full dataset in each iteration to generate proposals
and calculate the acceptance probability which make them prohibitively expensive for large datasets.

Stochastic gradient MCMC (SG-MCMC) has gained keen interest recently which uses minibatches
of the data to generate samples and ignore the acceptance step, thus scales well to large datasets.
Welling & Teh(2011) developed stochastic-gradient Langevin dynamics(SGLD) by incorporating
Langevin dynamics into stochastic optimization to insert adaptively scaled Gaussian noise, which is
the first sampling algorithm based on stochastic gradients [19]. Chen et al.(2014) suggested Stochastic
gradient Hamiltonian Monte Carlo (SGHMC) where they introduced auxiliary momentum term to
rapidly explore the parameter space [7]. Recent studies have been proposed to improve convergence
and sampling efficiency of SGLD and SGHMC for the past years [1, 15, 18, 6].

2 Our methods

In this paper we try to sample from an approximate posterior distribution using gradient uncertainty.
Let X(l) = (Xl,1, Xl,2, ..., Xl,m) denotes the sequence of gradient vector of ith example in lth
minibatch where Xl,i = ∇θJ(θ;x(i), y(i)) and m is the minibatch size. We define a new measure to
quantify gradient uncertainty.

Gradient Uncertainty =
∑
i 6=j

〈Xi, Xj〉 (2)

To the extent of our knowledge, this is the first work using stochastic gradient uncertainty for
Bayesian sampling algorithm. The main idea is that we use gradient uncertainty as an indicator that
the parameters are near the local optimum. The proposed sampling method is outlined in Alg 1.

Algorithm 1 Sampling algorithm

1: Initialize: Random θ1
2: for l = 1,2,...,T do
3: for i = 1,2,...,m do . m : minibatch size
4: Xl,i ←∇θJ(θ;x(i), y(i))
5: end for
6: X̃l ← 1

m

∑m
i=1Xl,i

7: gradient uncertainty ←
∑
i 6=j 〈Xi, Xj〉

8: if gradient uncertainty < threshold then
9: Sample θl

10: θl+1 ← θl − εX̃l + N(0, σ2) . ε : learning rate
11: else
12: θl+1 ← θl − εX̃l

13: end if
14: end for

When the algorithm reaches local extrema, the exact gradient should be either zero or very close to
zero. However, because of unbiased but noisy stochastic gradient, we assume the stochastic gradient
near local modes follows zero-mean Gaussian distribution. Since stochastic gradients from a single
training example, Xi, are randomly scattered around zero in each dimension of the gradient vector,
the sum of inner product between different gradient vectors in a minibatch, Eq. (2), gives a sufficiently
small value, whereas the sum of inner product can be large if the gradient vectors are not following
zero-mean Gaussian but pointing in the similar direction.

We evaluate gradient uncertainty from the minibatch and sample parameters when it is lower than a
certain threshold, meaning that we assume it has reached near local mode. That is, the magnitude of
mean of gradients is sufficiently small and directions of gradients are diverse. It is computationally
efficient because we calculate gradient uncertainty only from data subsets.
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Digit 4

Digit 5

Digit 7
(a) SGLD (b) Dropout (c) Ours

Figure 1: MNIST Confusing examples

In most NN, the loss functions are non-convex and thus gradient-based optimization might get stuck in
a local mode. We add random Gaussian noise to a proposal every time we sample a set of parameters,
so that our method can escape from local mode and explore the parameter space.

3 Experiments

We conduct two sets of experiments with MNIST [14] and notMNIST datasets for uncertainty
estimation. The notMNIST dataset contains front glyphs for the 10 class letters(A-J), which can
be treated as out-of-distribution data for the networks trained on original MNIST. The notMNIST
dataset consists of 19K hand-cleaned instances and 500K uncleaned instances [5].

3.1 MNIST : Confusing examples

In the first experiment, we train networks on MNIST and compare the ability of three different
methods to quantify uncertainty when confusing examples are given. We take the same five-layer
convolutional NN which are trained on MNIST, and then evaluate the predictive uncertainty with
60 Monte Carlo samples. The results are compared with Dropout Bayesian Approximation [10] and
SGLD [19]. This is shown in Figure 1.

In our approach the predictive results of given confusing digits are diverse and the probability is
concentrated on the most likely candidates, i.e. in our cases ’4’, ’5’, ’7’ can be misinterpreted as ’9’,
’6’, ’3’ respectively. On the other hand, other methods show an overconfident prediction by assigning
higher probability to incorrect classes.
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Letter A

Letter H
(a) SGLD (b) Dropout (c) Ours

Figure 2: notMNIST Out-of-distribution examples

3.2 notMNIST : Out-of-distribution data

We further experimented with the same networks trained on MNIST to evaluate the uncertainty
estimation on out-of-distribution data, which is notMNIST dataset in our case. Figure 2 shows the
comparison results with the same baseline methods. It is shown that the proposed approach generates
a fairly flat predictive posterior, while others are rather sharp. This result shows that our method
captures reliable uncertainty when classifying unseen data.

To compare the effectiveness of uncertainty estimation on out-of-distribution data, we use the entropy
of the predictive distribution, H(Y |X). The predictive distribution for a given image X and the
entropy can be expressed as:

p(Y |X) =

∫
p(Y |X, θ)p(θ|D)dθ (3)

H(Y |X) = −
∫
p(y|X) ln(p(y|X))dy (4)

We approximate H(Y |X) using 60 Monte Carlo samples over the notMNIST dataset. Entropy
comparison with baseline methods can be seen in Table 1. Our method shows higher predictive
entropy on out-of-distribution data, i.e., our model gives less confident predictions on them. In both
sets of experiments, we observe that our approach well represents predictive uncertainty while SGLD
and Dropout generally produce overconfident probabilities.

Ours SGLD Dropout
In-distribution

Test Accuracy (%) 98.05 95.34 99.39

Out-of-distribution
Predictive Entropy 1.355 0.107 0.665

Table 1: Entropy Comparison

4 Conclusion

Overconfident prediction is a major obstacle for many deep learning architectures to be deployed in
safety critical applications. This paper presents a new methodology for uncertainty estimation which
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uses stochastic gradient uncertainty as an indicator to sample. We experimented our model on MNIST
and notMNIST datasets. In both cases, we have shown that our method efficiently sample from
posterior using stochastic gradients based computation. It is an important future work to compare
quality of uncertainty estimates with other state-of-the-art SG-MCMC and variational methods. Also,
applying adaptive learning rate based on gradient uncertainty when performing SG-MCMC will be
another line of future work.
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