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Abstract

Conventional prior for Variational Auto-Encoder (VAE) is a Gaussian distribution.
Recent works demonstrated that choice of prior distribution affects learning capac-
ity of VAE models. We propose a general technique (embedding-reparameterization
procedure, or ER) for introducing arbitrary manifold-valued variables in VAE
model. We compare our technique with a conventional VAE on a toy benchmark
problem. This is work in progress.

1 Introduction

Variational Auto-Encoder (VAE) [1] and Generative Adversarial Networks (GAN) [2] show good
performance in modelling real-world data such as images well. The key idea of both frameworks is to
map a simple distribution (typically Gaussian) of lower dimension to a high-dimensional observation
space by a complex non-linear function (typically neural network). Most of research efforts are
concentrated on the enhancement of training procedure and neural architectures giving rise to a
variety of elegant extensions for VAE and GANs [3].

We consider prior distribution that is mapped to data distribution p(x) as one of design choices
when building generative model. Its importance is highlighted in a number of works [4, 5, 6, 7].
Although [5] provides an extensive overview of usage of L2-normalized latent variables (points lying
on a hypersphere); this is clearly just one of the possible design choices for prior distribution in
generative model.

Recent works [5, 6, 7] argued that manifold hypothesis for data [8] provides evidence in favor of
using more complicated priors than Gaussian, for which the topology of latent space matches that of
the data. The above mentioned works derived analytic formulas for reparameterization of probability
density on manifold (hypersphere in [5] and Lie group SO(3) in [6]).

A somewhat less rigorous argument in favor of using manifold-valued latent variables is that we
can represent generative process for data as having two sources of variation (see Figure 1): one is
uniform sampling from a group of transformations that we consider as compact symmetry groups (for
example group of rotations) and another one is all the rest. This favors the choice of such topology of
the latent space that would match "real" generative process: choose uniform distribution on some
compact symmetry group as a prior distribution for latent variables.

Once a universal procedure for fast prototyping of VAE with different manifold-valued variables
is available, such VAE can be used for estimating the likelihood integral p(x|Model) (for example

Third workshop on Bayesian Deep Learning (NeurIPS 2018), Montréal, Canada.



Figure 1: Observed data X are generated by uniform sampling from compact symmetry group G and
other independent factors of variation V (for example, label of the class).

using IWAE estimate [9]) and thus make conclusions about latent symmetries that are present in the
data. This was one of the key motivations for the current work.

All of above brings to the focus the case of continuously differentiable symmetry groups (Lie groups),
which is a special case of manifold-valued latent variables.

2 Manifold-valued latent variables

Let us make the following preliminary assumption:

Data x ∼ p(x), x ∈ S ⊂ Rn are generated as on Figure 1 with Lie group G embedded in Rm and
there is a continuous mapping G→ S.

When using images as a test bed it implies that images generated by "close" symmetry elements (say
two similar rotation angles φ1 and φ2) are also close in the pixel space. It justifies using additional
tricks such as continuity loss [6] for training VAE with manifold-valued latent variables.

2.1 Construction of VAE

Recall the optimization problem for VAE [1]:

L(φ, ψ) = Ex∼D
[
Ez∼qφ(z|x)[log pψ(x|z)]−KL(qφ(z|x)‖p(z))

]
→ max

φ,ψ
,

where D denotes the data distribution, qφ(z|x) is a posterior distribution on latent space Z, p(z) is
the corresponding prior, and pψ(x|z) is the likelihood of a data point x given z. In order to construct
a VAE with manifold-valued latent variables, we need the following:

1. An encoder that produces the posterior distribution q(z|x) from a parametric family of
distributions on a manifold.

2. An ability to sample from this posterior distribution: z ∼ q(z|x).
3. An ability to compute KL-divergence between this posterior and a given prior.

Recent works [5, 6] proposed approaches to working with manifold-valued latent variables that are
similar in spirit to ours: they derive a reparameterization of probability density defined on smooth
manifold and use it in VAE. Problem is that such derivation appears to be complicated and needs to
be done for all manifolds of interest.

Our approach is the following. First of all, we introduce a hidden latent space Zhid, such that
dimZhid = dimM = n, whereM is our manifold lying in a latent space Z of dimension m > n.
Let p(zhid) be a prior distribution on Zhid.

Suppose then, we have an embedding f : Zhid → Z, so that f(Zhid) ⊂M. Being an embedding
requires f to be a diffeomorphism with its image, in particular, f should be a differentiable injective
map. We also pose an additional constraint on f : it should map the prior on Zhid to a prior on the
manifoldM; in other words, if zhid ∼ p(zhid), then f(zhid) ∼ p(z).

Using this embedding f , we can construct a VAE with manifold-valued latent variables as depicted
on the right part of Figure 2. In this case the posterior distribution q(zhid|x) on Zhid together with
the embedding f induce a posterior distribution q(z|x) on M ⊂ Z. We then have to compute
KL-divergence between this induced posterior and the prior p(z) on the manifold. Despite the fact
that in this case the probability mass is concentrated on the manifoldM and hence the probability
density on Z is degenerate, we can define the manifold probability densities qM(z|x) and pM(z)
(see Appendix 5.1 for details). Moreover, the corresponding KL-divergence is equivalent to the
KL-divergence between distributions defined on Zhid (Appendix 4.3):

KL(qM(z|x)‖pM(z)) = KL(q(zhid|x)‖p(zhid))
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Hence the final optimization problem for model on the right part of Figure 2 becomes the following:

L(φ, ψ) = Ex∼D
[
Ezhid∼qφ(zhid|x)[log pψ(x|f(zhid))]−KL(qφ(zhid|x)‖p(zhid))

]
→ max

φ,ψ
,

where φ are parameters of VAE encoder, which encodes the object x into Zhid space, and ψ are
parameters of VAE decoder which maps the manifoldM⊂ Z to data-manifold in feature space; D
is our data distribution.

Thereby working with probability distributions induced on manifold of interest is easy: both terms in
VAE loss (reconstruction error and KL-divergence) are easily calculated in the original hidden space
Zhid that is further mapped on a manifold.

2.2 Learning manifold embedding

To apply the procedure described above, we have to construct an embedding f . In order to do this,
we propose the following procedure:

1. Sample data from p(z) (distribution onM).

2. Train Wasserstein Auto-Encoder (WAE) [10] on the data from p(z) (feature space) and the
latent space Zhid with the prior p(zhid): see the left part of Figure 2.

3. Use the decoder of this trained WAE as our embedding function f .

Our motivation is the following: since the dimension of latent space Zhid and the dimension of
manifoldM are the same, the reconstruction term in WAE objective constraints its decoder to be an
injective map. Since it is represented with a neural network, it is also differentiable. The objective
of WAE learning also forces its decoder to map a prior distribution on a latent space (in our case,
p(zhid)) to a distribution of data to the feature space (in our case, p(z)). Hence WAE decoder is an
ideal candidate for an embedding f .

zhid z ∈ x

p( )zhid p(x|z)

q( |x)zhid

z = f ( )zhid

zhid z ∈

z = f ( )zhid
p( )zhid

= h(x)zhid

p(z)

Figure 2: Left: Scheme diagram of WAE with feature space Z and latent space Zhid that learns the
prior distribution p(z) on manifoldM ⊂ Z. Right: The generative model with manifold-valued
latent variables z. The squared node is deterministic.

At first glance the described model leaves quite similar questions as vanilla VAE: we "shifted"
the complex task of learning non-homeomorphic manifolds of a different topology (latent space
and data space) from the VAE decoder to sub-module of the same VAE but pretrained using WAE.
Nevertheless, the procedure ensures better control over mapping to manifold and one can develop
corresponding metrics to control the quality of mapping.

3 Introducing symmetries of latent manifold into encoder

Recall that in our scheme an encoder q(zhid|x) together with embedding f : Zhid → Z induce a
family of posterior distributions q(z|x) onM; let us call this family Q.

A natural requirement to Q is to have the same symmetries asM has. Suppose we have a symmetry
group G ofM acting on Z, i.e.

∀z ∈M, ∀g ∈ G gz ∈M.

For example, ifM is an n-dimensional sphere Sn in Z = Rn+1,G is a group of rotations SO(n+1).
We require G to also be a symmetry of Q also:

∀q ∈ Q, ∀g ∈ G ∃q′ ∈ Q : ∀z ∈M q′(gz) = q(z).
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Figure 3: The generative model with group action-encoder acting on manifold-valued latent variable
z.

Table 1: Results on the toy task for different models.

Models ELBO

VAE, dimZ = 1 183.98± 11.66
Manifold-latent VAE with learned f , dimZhid = 1 197.19± 20.46
Manifold-latent VAE with f = fproj , dimZhid = 1 193.40± 24.57
Manifold-latent VAE with learned f and group action encoder, dimZhid = 1 259.03± 59.14
VAE, dimZ = 2 356.53± 22.96

This means that if a symmetry g of M acts on samples z from a distribution q ∈ Q, we should
get samples from another distribution q′ from the same family Q. Note that we did not pose this
requirement while training f , hence it would not generally be satisfied. Therefore we have to
symmetrize Q explicitly.

In order to do this we introduce a group action encoder a(x), see Figure 3. This group action encoder
produces an element g = a(x) of the symmetry group G of M, which further acts on a sample
z = f(zhid). This effectively enriches the posterior family Q with q′ : q′(gz) = q(z).

This procedure has close connection with homeomorphic VAE [6]. Suppose our manifoldM is a
compact Lie group. Then it is homeomorphic to its own symmetry group:M∼= G. Then our group
action-encoder is equivalent to Rµ of [6].

4 Experiments and conclusions

We followed the same experimental setup as for a toy task in paper [5], but without noise. 1 Sampling
of a batch from the dataset consisted of two steps:

1. We generated uniformly distributed points on a 1-dimensional unit sphere embedded in R2.

2. We applied a non-linear fixed transformation R2 → R100 implemented as a randomly
initialized multilayer perceptron with one hidden layer of size 100 and ReLU nonlinearity.
Xavier-uniform initialization scheme was applied to the hidden layer.

All models are VAEs with the posterior distribution q(zhid|x) (Beta on [0, 1]n), the prior distribution
p(z) (uniform of [0, 1]n) and the likelihood p(x|z) (Gaussian on R100). As for the reparameterization
function f(zhid), it was either WAE-MMD or the exact mapping from segment [0, 1] into a 1-
dimensional circle ("Projection") in the first layer of decoder:

fproj(zhid) = (cos(2πzhid) sin(2πzhid)))
T
.

The dimensions of latent variables n were either 1 or 2.

In a case when the group action encoder is used, it produces an angle (element of SO(2)), which is
further used to rotate the sample z = f(zhid) ∈ R2.

The results are presented in Table 1. All decoder structures that include manifold mapping show
better results than a vanilla VAE with 1-dimensional latent Gaussian space.

1Our code is available on GitHub: https://github.com/varenick/manifold_latent_vae
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5 Appendix

5.1 Probability density functions with manifold support

Suppose we have a probability distribution on Z = Rn with density p(z) and a diffeomorphism
f : Z → X , where X = Rn as well. Then, f induces a probability distribution on X with the
following density:

p(x) = p(f−1(x))|det Jf (f−1(x))|−1 = p(f−1(x))|det Jf−1(x)|.

Suppose now that X = Rm with m > n, and f : Z → X is a smooth embedding (which requires f
to be a diffeomorphism between Z and f(Z)). From this follows that f induces degenerate probability
distribution on X since all the probability mass in X is concentrated on a manifoldM = f(Z). The
corresponding probability measure is trivial:

P (f(A)) = P (A)

5



for some event A on Z. Although we cannot define a valid probability density of X , we can define a
manifold probability density onM = f(Z) as follows:

pM(f(z)) := lim
Vol(A)→0 s.t. z∈A

P (f(A))

VolM(f(A))

= lim
Vol(A)→0 s.t. z∈A

P (A)

VolM(f(A))

= lim
Vol(A)→0 s.t. z∈A

∫
A
p(z) dz1 . . . dzn

VolM(f(A))

= p(z) lim
Vol(A)→0 s.t. z∈A

∫
A
dz1 . . . dzn

VolM(f(A))
,

where by VolM(f(A)) we denote an n-dimensional volume of f(A) ⊂M; let us define this volume.
Let Ω be an open subset of Z. Then its image under embedding f is an open subset of a manifold
f(Ω) (open in terms of the topology ofM). If Z is a Euclidean space, than the "volume" of Ω is
given simply as:

Vol(Ω) =

∫
Ω

dz1 . . . dzn.

Since M is embedded into X , and X is a Euclidean space, we can measure an n-dimensional
"volume" of f(Ω) ⊂M. It is given as:

VolM(f(Ω)) =

∫
f(Ω)

√
|detG(z)| dz1 . . . dzn,

where G(z) is a metric tensor on Z, induced by the scalar product 〈·〉 on X and the embedding f :

Gij(z) =

〈
df(z)

dzi
,
df(z)

dzj

〉
.

Returning to our formula for probability density onM, we now have:

pM(f(z)) = p(z) lim
Vol(A)→0 s.t. z∈A

∫
A
dz1 . . . dzn∫

f(A)

√
|detG(z)| dz1 . . . dzn

= p(z)|detG(z)|−1/2.

Or,

pM(x) = p(f−1(x))|detG(f−1(x))|−1/2.

5.2 Calculation of KL divergence in the case of normalizing flow

KL(qM(z|x)‖pM(z)) = Ez∼qM(z|x)(log qM(z|x)− log pM(z))

= Ezhid∼q(zhid|x)(log q(zhid|x) + log |det Jf (zhid)|−1

− log p(zhid)− log |det Jf (zhid)|−1)

= Ezhid∼q(zhid|x)(log q(zhid|x)− log p(zhid))

= KL(q(zhid|x)‖p(zhid)).

where q(zhid|x) is the posterior distribution (i.e. fully-factorized Gauss or Beta) on latent variables
of WAE, which we use for manifold embedding, p(zhid) is the corresponding prior (i.e. standard
Gauss or Uniform), f is the decoder of the WAE, which we use to transform the latent space of WAE
into manifoldM, and Jf (zhid) is the Jacobian of this transformation. As we see, log-determinants
of Jacobians cancel out, and we are left with the KL-divergence on latent space of WAE.
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5.3 Calculation of KL divergence in case of embedding map

KL(qM(z|x)‖pM(z)) = Ez∼qM(z|x)(log qM(z|x)− log pM(z))

= Ezhid∼q(zhid|x)(log q(zhid|x) + log |detG(zhid)|−1/2

− log p(zhid)− log |detG(zhid)|−1/2)

= Ezhid∼q(zhid|x)(log q(zhid|x)− log p(zhid))

= KL(q(zhid|x)‖p(zhid)),

where G denotes the metric tensor of the embedding f . As in Appendix 4.2, the corresponding terms
cancel out.
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