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Abstract

We consider the application of deep generative models in propagating uncertainty
through complex physical systems. Specifically, we put forth an implicit varia-
tional inference formulation that constrains the generative model output to satisfy
given physical laws expressed by partial differential equations. Such physics-
informed constraints provide a regularization mechanism for effectively training
deep probabilistic models for modeling physical systems in which the cost of data
acquisition is high and training data-sets are typically small. This provides a scal-
able framework for characterizing uncertainty in the outputs of physical systems
due to randomness in their inputs or noise in their observations. We demonstrate the
effectiveness of our approach through a canonical example in transport dynamics.

1 Introduction

Despite their immense recent success, many state-of-the art machine learning techniques (e.g., deep
neural nets, convolutional networks, recurrent networks [1, 2, 3, 4], etc.) are lacking robustness and
often fail to provide any guarantees of convergence or quantify the error/uncertainty associated with
their predictions. Hence, the ability to quantify predictive uncertainty and learn in a sample-efficient
manner is a necessity [5, 6, 7, 8], especially in data-limited domains [9]. Even less well understood is
how one can constrain such algorithms to leverage domain-specific knowledge and return predictions
that satisfy certain physical principles [10] (e.g., conservation of mass, momentum, etc.). In recent
work, Raissi et. al. [11, 12, 13, 14] explored this new interface between classical scientific computing
and machine learning by revisiting the idea of penalizing the loss function of deep neural networks
using differential equation constraints, as first put forth by Psichogios and Ungar [15] and Lagaris et.
al. [16]. In this work, we revisit these approaches from a probabilistic standpoint [17, 18, 19] and
develop an adversarial inference framework [20, 21, 22, 23] to enable the posterior characterization
[24, 25] of the uncertainty associated with the model predictions. These uncertainty estimates reflect
how observation noise and/or randomness in the system’s inputs and outputs are propagated through
complex infinite-dimensional dynamical systems described by non-linear partial differential equations
(PDEs).

2 Methods

In Raissi et. al. [11, 12, 13, 14], the authors have considered constructing deep neural networks
that return predictions which are constrained by PDEs of the form ut +Nxu = 0, where u(x, t) is
represented by a deep neural network parametrized by a set of parameters θ, i.e. u(x, t) = fθ(x, t),
x is a vector of space coordinates, t is the time coordinate, and Nx is a nonlinear differential
operator. As neural networks are differentiable representations, this construction defines a so-
called physics informed neural network that corresponds to the PDE residual, i.e. rθ(x, t) :=
∂
∂tfθ(x, t) +Nxfθ(x, t). By construction, this network shares the same architecture and parameters
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with fθ(x, t), but it has different activation functions corresponding to the action of the differential
operator. The resulting training procedure allows us to recover the shared network parameters θ using
a few scattered observations of u(x, t), namely {(xi, ti),ui}, i = 1, . . . , Nu, along with a larger
number of collocation points {(xi, ti), ri = 0}, i = 1, . . . , Nr, that aim to penalize the PDE residual
at a finite set of Nr collocation nodes. This way, the resulting optimization problem can be effectively
solved using standard stochastic gradient descent without necessitating any elaborate constrained
optimization techniques, simply by minimizing the composite loss function

LPDE(θ) :=
1

Nu

Nu∑
i=1

‖fθ(xi, ti)− ui‖2 +
1

Nr

Nr∑
i=1

‖rθ(xi, ti)− ri‖2, (1)

where the required gradients can be readily obtained using automatic differentiation [26].

In the proposed work we aim to model uncertainty in such physics-informed models by constructing
conditional latent variable models of the form

p(u|x, t) =
∫
p(u, z|x, t)dz =

∫
p(u|x, t,z)p(z|x, t)dz, (2)

and encourage the resulting samples to be constrained by a given physical law according to a
likelihood

p(u|x, t,z), z ∼ p(z), such that ut +Nxu = 0. (3)
This setting encapsulates a wide range of deterministic and stochastic problems, where u(x, t) is a
potentially multi-variate field, and z is a collection of latent variables.

Following the recent findings of [27] we will train the generative model by matching the joint
distribution of the generated samples pθ(x, t,u) with the joint distribution of the observed data
q(x, t,u) by minimizing the reverse Kullback-Leibler (KL) divergence, which can be decomposed as

KL[pθ(x, t,u)||q(x, t,u)] = −h(pθ(x, t,u)))− Epθ(x,t,u)[log(q(x, t,u))], (4)
where h(pθ(x, t,u)) denotes the entropy of the generative model. This decomposition reveals the
interplay between two competing mechanisms that define the model training dynamics. On one hand,
minimizing the negative entropy term is encouraging the support of pθ(x, t,u) to spread to infinity,
while the second term will penalize regions for which the support of pθ(x, t,u) and q(x, t,u) do not
overlap. As observed in [27], this introduces a regularization mechanism for mitigating the pathology
of mode collapse.

As the entropy term h(pθ(x, t,u))) is intractable, we can obtain a computable training objective by
deriving the following lower bound (see proof in Appendix A)

h(pθ(x, t,u)) ≥ h(p(z)) + Epθ(x,t,u,z)[log(qφ(z|x, t,u))], (5)
where the inference model qφ(z|x, t,u) plays the role of a variational approximation to the true
posterior over the latent variables, and appears naturally using information theoretic arguments in the
derivation of the lower bound [27].

This construction leads to two coupled objectives that define an adversarial game for training the
model parameters

LD(ψ) := Eq(x,t)p(z)[log σ(Tψ(x, t, fθ(x, t,z)))]+
Eq(x,t,u)[log(1− σ(Tψ(x, t,u)))] (6)

LG(θ, φ) := Eq(x,t)p(z)[Tψ(x, t, fθ(x, t,z)) + (1− λ) log(qφ(z|x, t, fθ(x, t,z)))], (7)
where Tψ(x, t,u) is a parametrized discriminator used to approximate the KL divergence directly
from samples using the density ratio trick [28], and σ(x) = 1/(1 + e−x) is the logistic sigmoid func-
tion. Moreover, notice how the inference model qφ(z|x, t, fθ(x, t,z)) promotes cycle consistency in
the latent variables, and serves as an entropic regularization term than allows us to stabilize model
training and mitigate the pathology of mode collapse, as controlled by the user defined parameter λ
[27]. The final training objective that encourages the generated samples to satisfy a given PDE reads
as

max
ψ
LD(ψ)

min
θ,φ
LG(θ, φ) + βLPDE(θ),

(8)

where positive values of β can be selected to place more emphasis on penalizing the PDE residual.
For β > 0, the residual loss LPDE(θ) acts as a regularization term that encourages the generator
pθ(u|x, t,z) to produce samples that satisfy the underlying partial differential equation.
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3 Results

Here we demonstrate the performance of the proposed methodology through the lens of a canonical
problem in transport dynamics modeled by the Burgers equation with appropriate initial and boundary
conditions. This equation arises in various areas of applied mathematics, including fluid mechanics,
nonlinear acoustics, gas dynamics, and traffic flow [29]. In one space dimension the equation reads as

ut + uux − νuxx = 0, x ∈ [−1, 1], t ∈ [0, 1],

u(0, x) = − sin(πx), u(t,−1) = u(t, 1) = 0,
(9)

where ν = 0.01/π is a viscosity parameter, small values of which can lead to solutions developing
shock formations that are notoriously hard to resolve by classical numerical methods [29].

Here, we construct a probabilistic representation for the unknown solution u(x, t) using a physics-
informed deep generative model pθ(u|x, t, z), and we introduce parametric mappings corresponding
to a generator fθ(x, t, z), an encoder qφ(z|x, t, u), and a discriminator Tψ(x, t, u) all constructed
using deep feed-forward neural networks with 4 hidden layers with 50 neurons each. The activation
function in all cases is chosen to be a hyperbolic tangent non-linearity. The prior over the latent
variables is chosen to be a one-dimensional isotropic Gaussian distribution, i.e. z ∼ N (0, 1). We
train our probabilistic model using 30, 000 stochastic gradient Adam updates [30] using a learning
rate of 10−4 on a data-set comprising of Nu = 200 input/output pairs for u(x, t) – 100 points for the
initial condition and 50 points for each of the domain boundaries – plus an additional Nr = 10, 000
collocation points for enforcing the residual of the Burgers equation using the loss of equation 8 with
λ = 2.0 and β = 1.0. A systematic study with respect to the model hyper-parameters is provided in
Appendix B. Notice that the initial condition here is corrupted by a non-additive noise process as

u(x, 0) = − sin(π(x+ 2δ)) + δ, δ = ε/ exp(3|x|), ε ∼ N (0, 0.12),

and our goal here is to propagate the effect of this uncertainty into the prediction of future system
states. Notice how the noise variance is chosen to be larger around x = 0, therefore amplifying the
effect of uncertainty on the shock formation.

The results of this experiment are summarized in figure 1, where we report the predicted mean
solution, as well as the uncertainty associated with this prediction. We observe that the resulting
generative model pθ(u|x, t, z) can effectively capture the uncertainty in the resulting spatio-temporal
solution due to the propagation of the input noise process through the complex non-linear dynamics
of the Burgers equation. As expected, the uncertainty concentrates around the shock discontinuity
that the solution develops around t = 0.5. Although we only plot the first two moments of the
solution, we must emphasize that the generative model pθ(u|x, t, z) provides a complete probabilistic
characterization of its non-Gaussian statistics.
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Figure 1: Top: Mean and variance of pθ(u|x, t, z), along with the location of the noisy training
data {(xi, ti), ui}Nui=1. Bottom: Noisy data for the initial condition, and the resulting prediction and
predictive uncertainty at t = 0.25, t = 0.5 and t = 0.75.
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A Proof of the Entropy Lower Bound

Here we follow the derivation of Li [27] to construct a computable lower bound for the entropy
h(pθ(x, t,u))). To this end, we start by considering random variables (x, t,u, z) under the joint
distribution

pθ(x, t,u, z) = pθ(u,x, t|z)p(z) = pθ(u|x, t,z)p(x, t)p(z),
where pθ(u|x, t,z) = δ(u−fθ(x, t,z)), and δ(·) is the Dirac delta function. The mutual information
between (x, t,u) and z satisfies the information theoretic identity

I(x, t,u; z) = h(x, t,u)− h(x, t,u|z) = h(z)− h(z|x, t,u),

where h(x, t,u), h(z) are the marginal entropies and h(x, t,u|z), h(z|x, t,u) are the conditional
entropies [31]. Since in our setup x and t are deterministic variables independent of z, and samples
of pθ(u|x, t,z) are generated by a deterministic function fθ(x, t,z), it follows that h(x, t,u|z) = 0.
We therefore have

h(x, t,u) = h(z)− h(z|x, t,u), (10)

where h(z) := −
∫
log p(z)p(z)dz is a constant with respect to the model parameters θ.

Now consider a general variational distribution qφ(z|x, t,u) parametrized by a set of parameters φ.
Then,

h(z|x, t,u) =− Epθ(x,t,u,z)[log(pθ(z|x, t,u))]
=− Epθ(x,t,u,z)[log(qφ(z|x, t,u))]
− Epθ(x,t,u)[KL[pθ(z|x, t,u)||qφ(z|x, t,u)]]

≤− Epθ(x,t,u,z)[log(qφ(z|x, t,u))]. (11)

Viewing z as a set of latent variables, then qφ(z|x, t,u) is a variational approximation to the true
intractable posterior over the latent variables pθ(z|x, t,u). Therefore, if qφ(z|x, t,u) is introduced
as an auxiliary encoder associated with the generative model pθ(x, t,u), for which u = fθ(x, t,z)
and z ∼ p(z), then we can use equations 10 and 11 to bound the entropy term in equation 4 as

h(pθ(x, t,u)) ≥ h(p(z)) + Epθ(x,t,u,z)[log(qφ(z|x, t,u))] (12)

B Systematic Studies

Here we provide results on a series of comprehensive systematic studies that aim to quantify the
sensitivity of the resulting predictions on: (i) the neural network initialization, (ii) the total number of
training and collocation points, (iii) the neural network architecture, and (iv) the adversarial training
procedure. In all cases we have used the non-linear Burgers equation as a prototype problem.

B.1 Sensitivity with respect to the neural network initialization

In order to quantify the sensitivity of the proposed methods with respect to the initialization of the
neural networks, we have considered a noise-free data set comprising of Nu = 150 and Nr = 10000
training and collocation points, respectively, and fixed the architecture for generator neural networks
to include 4 hidden layers with 50 neurons each and discriminator neural networks to include 3
hidden layers with 50 neurons each , and a hyperbolic tangent activation function. Then we have
trained an ensemble of 15 cases all starting from a normal Xavier initialization [32] for all network
weights (with a randomized seed), and a zero initialization for all bias parameters. In table 1 we
report the relative error between the predicted mean solution and the known exact solution for this
problem for all 15 randomized trials using at set of 25600 randomly selected test points. Evidently,
our results are robust with respect to the the neural network initialization as in all cases the stochastic
gradient descent training procedure converged roughly to the same solution. We can summarize this
result by reporting the mean and the standard deviation of the relative L2 error as

L̂2 ∈ [µL − σL, µL + σL] = [4.7× 10−2 − 1.3× 10−2, 4.7× 10−2 + 1.3× 10−2].
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Relative L2 error
4.1e-02 7.9e-02 4.4e-02 4.0e-02 3.8e-02
3.2e-02 5.7e-02 4.7e-02 6.5e-02 4.0e-02
3.5e-02 3.5e-02 6.4e-02 4.0e-02 4.9e-02

Table 1: Relative L2 error with different seed of initialization in non-noise case.

B.2 Sensitivity with respect to the total number of training and collocation points

In this study our goal is to quantify the sensitivity of our predictions with respect to the total number
of training and collocation points Nu and Nr, respectively. As before, we have considered noise-free
data sets, and fixed the architecture for generator neural networks to include 4 hidden layers with
50 neurons each and discriminator neural networks to include 3 hidden layers with 50 neurons each,
a hyperbolic tangent activation function, and a normal Xavier initialization [32] for all network
weights and zero initialization for all network biases. The results of this study are summarized in
table 2, indicating that as the number of collocation points are increased, a more accurate prediction
is obtained. This observation is in agreement with the original results of Raissi et. al. [11] for
deterministic physics-informed neural networks, indicating the role of the PDE residual loss as an
effective regularization mechanism for training deep generative models in small data regimes.

Nu
Nr 10 100 250 500 1000 5000 10000

60 9.3e-01 5.6e-01 4.8e-01 5.0e-02 1.9e-01 5.0e-02 5.1e-02
90 5.8e-01 5.3e-01 3.5e-01 1.5e-01 4.9e-02 1.0e-01 5.8e-02

150 6.7e-01 1.4e-01 3.0e-01 3.6e-02 4.9e-02 1.2e-01 4.7e-02
Table 2: Relative L2 prediction error for different number of training and collocation points Nu and
Nr, respectively.

B.3 Sensitivity with respect to the neural network architecture

In this study we aim to quantify the sensitivity of our predictions with respect to the architecture
of the neural networks that parametrize the generator, the discriminator, and the encoder. Here we
have fixed the number of noise-free training data to Nu = 150 and Nr = 10000, and we kept the
number of layers for discriminator to always be one less than the number of layers for generator
(e.g., if the number of layers for generator is two then the number of layers for discriminator is one,
etc.). In all cases, we have used a hyperbolic tangent non-linearity and a normal Xavier initialization
[32]. In table 3 we report the relative L2 prediction error for different feed-forward architectures for
the generator, discriminator, and encoder (i.e., different number of layers and number of nodes in
each layer). The general trend suggests that as the neural network capacity is increased we obtain
more accurate predictions, indicating that our physics-informed constraint on the PDE residual can
effectively regularize the training process and safe-guard against over-fitting. We note number of
neurons in each layer as Nn and number of layers for generator (encoder) as Ng .

Ng
Nn 20 50 100

2 4.2e-01 3.8e-01 5.7e-01
3 6.5e-02 3.5e-02 2.1e-02
4 9.3e-02 4.7e-02 5.4e-02

Table 3: Relative L2 prediction error for different feed-forward architectures for the generator,
encoder, and the discriminator. The total number of layers of the latter was always chosen to be one
less than the number of layers for generator.

B.4 Sensitivity with respect to the adversarial training procedure

Finally, we test the sensitivity with respect to the adversarial training process. To this end, we have
fixed the number of noise-free training data to Nu = 150 and Nr = 10000, and the neural network
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architecture to be the same as B.2, and we vary the total number of training steps for the generator
Kg and the discriminator Kd within each stochastic gradient descent iteration. The results of this
study are presented in table 4 where we report the relative L2 prediction error. These results reveal
the high sensitivity of the training dynamics on the interplay between the generator and discriminator
networks, and pinpoint on the well known peculiarity of adversarial inference procedures which
require a careful tuning of Kg and Kd for achieving stable performance in practice.

Kg

Kd 1 2 5

1 3.5e-01 5.0e-01 1.5e+00
2 4.3e-02 3.2e-01 5.4e-01
5 4.7e-02 2.3e-01 7.0e-01

Table 4: Relative L2 error with different number of training for generator and discriminator in each
epoch.
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