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Abstract

Deep neural networks have become the default choice for many machine learning
tasks, such as classification and regression. Dropout, a method commonly used to
improve the accuracy of deep neural networks, generates an ensemble of thinned
networks with extensive weight sharing. Recent studies [[1, 2] show that dropout
can be viewed as approximate Bayesian inference, and can be utilized as a practical
tool to obtain uncertainty estimates of the network. We propose a novel statistical
mechanics-based framework for dropout. We use this framework to propose a new
generic algorithm that focuses on estimating the variance of the loss, as measured
by the ensemble of thinned networks. Our approach can be applied to a wide range
of deep neural network architectures and machine learning tasks. In classification,
this algorithm allows the generation of a don’t-know answer, which can increase
the reliability of the classifier. Empirically, we demonstrate that our algorithm
improves state-of-the-art AUC results on publicly available benchmarks.

1 Introduction

Deep learning (DL) algorithms are being used to successfully solve real-world classification problems
from various fields, including recognizing handwritten digits and identifying the presence of key
diagnostic features in medical images [L1}[9]. A typical classification challenge for a DL algorithm
involves training the algorithm on an example data set, then using a separate set of test data to
evaluate its performance. The aim is to provide answers that are as accurate as possible, as measured
by the true positive rate (TPR) and the true negative rate (TNR). Many DL classifiers, particularly
those using a softmax function in the very last layer, yield a continuous score, h. A step function is
then used to map this continuous score to each of the possible categories that are being classified.
TPR and TNR scores can then be generated for each separate example that is being predicted. This
is done by setting a threshold parameter that is applied when mapping h to the decision. Values
above this threshold are mapped to positive predictions, while values below it are mapped to negative
predictions. The ROC curve is then generated from these pairs of TPR/TPN scores. The performance
of binary classifiers is often evaluated by calculating the area under the ROC curve (AUC) [3]].

Many studies show that the AUC achieved by DL algorithms is higher than most, if not all, of the
alternative classifiers. Unfortunately, DL algorithms are notorious for being “black box” models, as it
is difficult to obtain insight into how the algorithm arrived at its conclusion. One way to mitigate
this problem is to provide a measure of the classification uncertainty, or the confidence one has
in the classification prediction, along with the prediction of the outcome. An additional benefit of
assessing uncertainty in DL algorithms is that such classifiers are frequently permitted to return a
“don’t know” answer for very low confidence predictions in the test data, and can be judged only on
the responses in the “do know” portion of the dataset. This permits the algorithm to generate higher
quality predictions overall, while leaving humans to interpret the samples for which it would generate
poor quality predictions, similar to a triage system. Recent studies combine the dropout technique
for DL regularization with Bayesian modeling, to derive uncertainty estimates in DL classifiers
(1L 25151 16]).
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The three main contributions of this work are the following. First, we introduce a statistical mechanic
framework that assigns probability distributions over the ensemble of thinned networks of the dropout,
i.e., neural networks with a subset of neurons removed, based on the performance of their cross-
entropy loss function across the test dataset. This framework has a flexible variable, 3, which
represents the inverse temperature. When set to zero, it results in a uniform distribution assumption
over the thinned networks, and the framework collapses to a Bayesian one. In contrast, a finite inverse
temperature S results in a non-uniform distribution, and the framework enables interpretation and
reasoning regarding uncertainty. Second, we present a new algorithm that is based on estimations
of the loss variance in the case of a finite 3 through Monte Carlo sampling, called Loss Variance
Monte Carlo Estimate (LoVME). Finally, we illustrate the benefits of deriving uncertainty through
the LoVME algorithm in scenarios where the classifier can yield a don’t-know answer. We use the
MNIST [8] and CIFAR [7] datasets to show the performance of our algorithm, and compare our
results to state-of-the-art algorithms for uncertainty in DL.

2 Statistical Mechanics Framework for Deep Learning Ensemble

In this section we view dropout through the lens of statistical mechanics. This enable us to design
a novel uncertainty framework for deep learning ensembles. For ease of notation, throughout this
section we follow a single example for which we want to estimate uncertainty. For the uncertainty
estimation, we use the dropout method, which induces an ensemble of thinned networks. Each
thinned network ¢ is defined by its loss £; and the number of neurons that it contains, N;. We would
like to find the distribution over the thinned NNs, which we denote p(L;, N;) or simply p;,. We can
estimate the expected size of the network, as it depends on the dropout value and the expected loss
using the training error. Thus, we can approximate the following two expectations

E[L] = p(LiNi)Li, E[N] =) p(Li, N;) N;. (1)

According to the principle of maximum entropy [4], the distribution with maximal entropy (i.e., the
distribution that maximizes — >, p; log p;) best represents the current state of knowledge among all
distributions that satisfy Equation (). The resulting distribution is the one with the probability of the
1-th thinned NN being
1
pi= e

where (3 and 7) are some parameters that depend on E[£] and E[N], and Z is a normalization factor. In
statistical mechanics, distribution is called Gibbs distribution, 3 is referred to as the temperature,
7 as the chemical potential, and Z as the partition function.

(BL; -HINz')7 (2)

3 Loss Variance Monte Carlo Estimate

The variance of the loss can be deduced from the partition function Z,

9% log Z
VarlL] = 2 ©)

This variance is a measure of the uncertainty; thus, to estimate the uncertainty we would like to
compute the partition function. Unfortunately, the partition function contains an exponential number
of terms and is therefore impossible to calculate directly. To remedy this situation, we present an
algorithm that approximates this value using the importance sampling technique. This algorithm,
Loss Variance Monte Carlo Estimate (LoVME), can numerically evaluate the needed value in an
efficient manner.

We used the probability defined in Equation (2) as a non-uniform sampler. This approach gives less
weight to thinned networks with high loss, and allows us to avoid sampling only in a small region
of the thinned NN. To ensure that we pick each state with its associated probability measure, we
generate a Markov chain Monte Carlo in an ergodic way, such that the rates obey a detailed balance.
The detailed balance assumption allows us to sample thinned networks with Metropolis-Hastings
algorithms, with the following acceptance rule when moving from thinned network ¢ to j

{eﬁ((ﬁiﬁj)wwi%)) if £i = L+ 5 (Ni = Nj) >0 )

1 otherwise
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Figure 1: ROC curves when algorithms are allowed to return “don’t know”

4 Experiments

To demonstrate the effectiveness of the LoVEMe algorithm, we focus on the natural scenario where
an algorithm is allowed to return “don’t know” on a small fraction of examples. These examples are
in turn classified by humans. Thus, one can set a certain threshold over an uncertainty measure above
which an example is too ambiguous. To estimate the uncertainty, we trained a LeNET [10] network
in PyTorch [12], using dropout with probability p = 0.5 [ﬂ We used a cross-entropy softmax loss
function in both the training and testing phases. We applied it to two different datasets: MNIST [8]]
and CIFAR-10 [[7]. For MNIST, we tested against a partially perturbed subset, where we introduced
both random rotation and noise to 10% randomly chosen images in the test set.

The basic uncertainty measure, which we call the “ground truth” measure, is calculated using the
variance over different initializations of the weights. Specifically, we trained an ensemble of 4000
LeNET networks with different initializations of the weights. For each ensemble we performed a
classification of the test portion in the dataset, and calculated the variance over the 4000 networks of
the probability outcome from the softmax cross-entropy for the correct class. For each dataset, we
generated an ensemble of thinned NNs using the LoVMe algorithm to estimate the uncertainty. Each
of these ensembles typically converged within 300 Monte Carlo steps.

4.1 Results

We show that removing high uncertainty examples increases the AUC when using our LoVME
method compared to Monte Carlo dropout and the naive ground truth. Figure[l]shows the Receiver
Operating Characteristic (ROC) curves and Table[T|shows the different values of the AUC for each of
these three methods.

W/0O Ground truth MC dropout LoVME w/
uncertainty w/ uncertainty | uncertainty w/ uncertainty
corrections corrections corrections corrections

MNIST 0.967 0.974 0.974 0.974
CIFARI10 0.956 0.967 0.972 0.973

Table 1: The AUC values of the ROC curves of Figure E} In bold, the best algorithm for each dataset.

5 Conclusions

We presented a method for estimating the uncertainty of a DL classifier using a novel framework
that assigns probability distributions to thinned networks using ideas from statistical mechanics.
Using this framework, we designed the Loss Variance Monte Carlo Estimate (LoVME) algorithm
and illustrated the benefits of this algorithm on the MNIST [8]] and CIFAR [7] datasets.

'Code to be available for both the network and the LoVMe algorithm.
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