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Abstract

Exploration is a difficult challenge in reinforcement learning and is of prime impor-
tance in sparse reward environments. However, many of the state of the art deep
reinforcement learning algorithms, that reply on epsilon-greedy exploration, fail on
these environments. In such environments, empowerment can serve as an intrinsic
reward signal to enable the agent to explore by maximizing the influence it has
over the near future. The mutual information, required to calculate empowerment,
is estimated using a Mutual Information Neural Estimator and a forward dynamics
model. We demonstrate that an empowerment driven agent is able to find the
rewards in Montezuma’s Revenge where a baseline DQN agent fails to find any.

1 Introduction

Reinforcement learning (RL) tackles sequential decision making problems by formulating them as
tasks where an agent must learn how to act optimally through trial and error interactions with the
environment. The goal is to maximize the sum of the numerical reward signal observed at each
time step. Here we focus on the problem of exploration in RL, which aims to reduce the number of
interactions an agent needs in order to learn to perform well.

The most common approach to exploration in absence of any knowledge about the environment is
to perform random actions. As knowledge is gained, the agent can use it to attempt to increase its
performance by taking greedy actions, while retaining some chance to choose random actions to
further explore the environment (epsilon-greedy exploration). However, if rewards are sparse or are
not sufficiently in- formative to allow performance improvements, epsilon-greedy fails to explore
sufficiently far. Several methods have been described that bias the agent’s actions towards novelty
mostly by using optimistic initialization or curiosity signals.

In particular,we opt for empowerment [Klyubin et al.| [2005]], an information-theoretic formulation
of the agent’s influence on the near future. The value of a state, its empowerment value, is given by
the maximum mutual information between a control input and the successor state the agent could
achieve.

Mutual Information is known to be very hard to calculate. Thankfully, recent advances in neural
estimation [Belghazi et al.| [2018] enable effective computation of mutual information between
high dimensional input / output pairs of deep neural networks, and in this work we leverage these
techniques to calculate the empowerment of a state.

*Code is available at https://github.com/navneet-nmk/pytorch-rl
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2 Empowerment-Driven Exploration

Our agent is composed of two networks: a reward generator that outputs a empowerment-driven
intrinsic reward signal and a policy that outputs a sequence of actions to maximize that reward signal.
In addition to intrinsic rewards, the agent optionally may also receive some extrinsic reward from the
environment. Let the intrinsic curiosity reward generated by the agent at time t be r; and the extrinsic
reward be r.. The policy sub-system is trained to maximize the sum of these two rewards r=r;+r..

2.1 Empowerment

The Empowerment value for a state s is defined as the channel capacity between the action a and the
following state s’ Klyubin et al.| [2005],

E(s) = max I(s'a|s). (1)

Where I is the mutual information. 7 is the empowerment maximizing policy. Empowerment,
therefore, is the maximum information an agent can transfer to it’s environment by changing the next
states through it’s actions.

This mutual information in eq. @) can further be represented in the form of the KL Divergence,
I(s\a|s) =KL(p(s\a|s) || p(s'| s)w(a|s))
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To compute the mutual information, we will be using the formulation as explained in Belghazi et al.
[2018].

2.2 Mutual Information Neural Estimation

The Mutual Information Neural Estimation (MINE, Belghazi et al.| [2018]]) learns a neural estimate of
the mutual information of continuous variables, is strongly consistent and can be used to learn the
empowerment value of a state by using a forward dynamics model, p(s;+1 | s¢, a;) to get the samples
from the marginal distribution of p(s¢11 | s¢), and the policy, m(a; | s¢).

Following, Belghazi et al.| [2018]], we train a discriminator (a classifier) to distinguish between
samples coming from the joint, p(s’, a | s), and the marginal distributions, p(s;+1 | s¢) and 7(a; | s¢).
MINE relies on a lower-bound to the mutual information based on the [Donsker and Varadhan|[[1983],

I(sa|s) =KL(p(s'a|s) || p(s'| s)w(a|s))
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We use this estimate of the mutual information (or the empowerment for the state, s) as the intrinsic
reward to train the policy.

2.3 Forward dynamics model

The forward dynamics model, p(s¢+1 | S¢,a;), is used to sample from the marginal distribution,
p(St41 | st) by marginalizing out the actions,

ps5) = [ wlals)pisials)da

The dynamics model is trained simultaneously with the statistics network, 7" and the policy, w(a | s).

3 Experimental Setup

3.1 Agent

The proposed empowerment driven DQN agent is composed of a policy network, the DQN, and the
intrinsic reward generator that is composed of the statistics network 7" and the forward dynamics



Algorithm 1 Joint training of policy , statistics 7" and forward dynamics model p(s;11 | ¢, a;)

Require: cumulation horizon N, initializations for 7, T', f and e
repeat
form=1: M do
Sample a batch b of transitions from a replay buffer B
for each transition (s, a4, S¢+1, 7.) do
Update f to reduce >, [e(si+1) — f(e(se, ar))]3
Update T to increase the mutual information

Ep(s'als)[Te] = 108 Ep(sis)m(als)[e””]

Update the reward function for the transition r =r, + Z(s,a | s)
end for
Update the agent using the bellman update y = r + v * max, Q(s¢, at)
end for
until convergence

model, p(s¢+1 | s¢, a¢). The implementation is using Pytorch [Paszke et al.|[2017]. Inputs are a stack
of four 84 x 84 gray scale frames. All the observations are then encoded to a 64 dimensional encoding
using a random convolutional encoder. All other networks share the same network architecture but
use separate artificial neural networks. We used double Q-learning with target network updates every
2000 steps and an experience replay of buffer capacity 1000000 steps. Training of the models starts
at 1000 steps and follows Algorithm 1. All 3 networks are trained on batch size of 64, using Adam
optimizers with learning rate of le-2, le-3 and le-4 for the forward dynamics, statistics and policy
network respectively.

The DQN Agent predicts 18 Q-values corresponding to the 18 actions in ALE, uses relu activations
and a discount factor of 0.99. The extrinsic reward is clipped between [-1, 1] and the gradients of the
temporal difference loss is clamped between [-1, 1]. The value used for 3 is 0.1.
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Figure 1: Rewards in Montezuma’s Revenge



3.2 Results

The DQN Agent trained using the empowerment intrinsic motivation is able to consistently exit the
room one and gather the rewards whereas the agent trained on the reward signal of the game fails to

receive any reward (Figure IJ).

Owing to computational limits, the size of the environment encoding was limited to 64 which could
prove to be insufficient for the Atari Environment. This is a parameter which needs to be investigated
further in future work.

4 Conclusion and future work

The experiments show that using empowerment, calculated using mutual information neural estima-
tion, as an intrinsic motivator can help an agent to consistently achieve rewards.

Compared to an agent which just receives the external reward signal from the game, the empowerment
driven agent is able to consistently achieve the rewards in the first level of Montezuma’s revenge and
enter the second room.

Future work includes the testing of the method on the entire Atari game suite as well as increasing
the model sizes and embedding sizes.
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