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Abstract

Generative Adversarial Networks have surprising ability for generating sharp and
realistic images, though they are known to suffer from the so-called mode collapse
problem. In this paper, we propose a new GAN variant called Mixture Density
GAN that while being capable of generating high-quality images, overcomes this
problem by encouraging the Discriminator to form clusters in its embedding space,
which in turn leads the Generator to exploit these and discover different modes in
the data. This is achieved by positioning Gaussian density functions in the corners
of a simplex, using the resulting Gaussian mixture as a likelihood function over
discriminator embeddings, and formulating an objective function for GAN training
that is based on these likelihoods. We demonstrate empirically (1) the quality of
the generated images in Mixture Density GAN and their strong similarity to real
images, as measured by the Fréchet Inception Distance (FID), which compares
very favourably with state-of-the-art methods, and (2) the ability to avoid mode
collapse and discover all data modes.

1 Introduction

Generative Adversarial Networks (GANSs) [6] learn an implicit estimate of the Probability Density
Function (PDF) underlying a set of training data and can learn to generate realistic new samples.
One of the known issues in GANSs is the so-called mode collapse [1, 15, [12]], where the generator
memorizes a few training examples and all the generated examples are similar to only those. These
memorized examples are known as modes. Although for the generator having a few — but good —
modes for generated images is enough to fool the discriminator, the result is not a good generative
model: when mode collapse happens, the generator is only capable of generating examples close to
these modes and fails to generate a high variety from different prototypes available in the training
data.

In this paper, we propose Mixture Density GAN that is capable of generating high-quality samples,
and in addition copes with mode collapse problem and enables the GAN to generate samples with a
high variety. The central idea of Mixture Density GAN (MD-GAN) is to enable the discriminator
to create several clusters in its output embedding space for real images, and therefore provides
better means to distinguish not only real and fake, but also between different kinds of real images.
The discriminator in MD-GAN forms a number of cluster with embeddings of real images which
represent clusters in the real data. To fool the discriminator, the generator then has to generate images
that discriminator has to embed close to the center of these clusters. As there are multiple clusters,
the generator can discover various modes by generating images that end up in various clusters.

*This work was supported by the Austrian Ministry for Transport, Innovation & Technology, the Ministry of
Science, Research & Economy, and the Province of Upper Austria in the frame of the COMET center SCCH.
2The number of clusters is a parameter that can be set.
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Figure 1: Block diagram of Mixture Density GAN. This figure should be viewed in colour.

MD-GAN’s Discriminator uses a d-dimensional embedding space and is provided with an objective
function that pushes it towards forming clusters in this space which are arranged in the form of
a Simple)ﬂ each cluster center is located in one of the vertices of this simplex. In our empirical
experiments, we use four benchmark datasets of images and one synthetic dataset to demonstrate
the ability of MD-GAN to generate samples with good quality and high variety, and to avoid mode
collapse. Comparing our results to state-of-the-art methods in terms of the Fréchet Inception Distance
(FID) [18]] as well as the number of discovered modes, we will demonstrate that MD-GAN can achieve
state-of-the-art level results.

2 Mixture Density Generative Adversarial Networks

2.1 Mixture Density GAN: The Intuition

As explained in the introduction, the basic idea in Mixture Density GAN is to encourage the
discriminator to form a number of clusters from embeddings of real images. As also mentioned
above, these clusters will be positioned in an equi-distant way, their center vectors forming a simplex.
Each cluster is represented by a Gaussian kernel, the whole collection thus makes up a mixture of
Gaussians, which we will call a Simplex Gaussian Mixture Model (SGMM). Each of the clusters
draw embeddings of fake images towards their center. This is achieved by using the SGMM as a
likelihood function. Each Gaussian kernel spreads its density over the embedding space: the closer
an embedding to the center of a cluster, the more density it gets and therefore, the more likelihood
reward it receives.

By defining a likelihood function with the parameters of a SGMM, in each update we train the
discriminator to encode real images to the centers of the clusters. The resulting SGMM creates a
mixture of clusters that draws the real embeddings towards the cluster centers (see Figure[I). Because
of the multiple clusters, the generator will be rewarded if it generates samples that end up in any of
these clusters. Thus, if the fake embeddings are well spread around the clusters — which they are
likely to be at the beginning of training, when they are essentially just random projections —, it is
likely that most of the clusters will draw the fake embeddings. Therefore, the generator will tend
to learn to generate samples with more variety to cover all of the clusters, which ideally results in
discovering the modes present in the data and directly addresses the mode collapse problem. On
the other hand, it is reasonable to expect the discriminator to create such clusters based on relevant
similarities in the data, since it is trained as a classifier and therefore needs to learn a meaningful
distance in its embedding space. Experiments described in results Section will confirm our intuition.

2.2 Mixture Density GAN: The Model

As in the vanilla GAN, MD-GAN consists of a generator G and a discriminator D. MD-GAN uses
a mixture of Gaussians in its objective functions whose mean vectors are placed in the cartesian
coordinates of the vertices in a d-dimensional simplex.

Discriminator: The discriminator D in MD-GAN is a neural network with d-dimensional output.
For an input image x, the discriminator creates an embedding e which is simply the activations of
the last layer of the network for input .

3A simplex is defined as a generalization of the notion of a tetrahedron with d dimensions and d + 1
vertices[/14].



The SGMM in MD-GAN is a Gaussian mixture with the following properties: 1) The individual
components are d-dimensional multivariate Gaussians (where d is the output/embedding dimension-
ality of the discriminator network). 2) The model comprises d + 1 Gaussian components, whose
mean vectors are exactly the coordinates of the vertices of a simplex. 3) The covariance matrices are
diagonal and have equal values on the main diagonal, in all the components. Thus, all components
are spherical Gaussians. 4) The component weights w; are either 1 if the component produces the
highest likelihood among all components, or 0 otherwise.

For an embedding e produced by the discriminator D, we define the following likelihood function:

sz~ (&5 10 %0) (1)

where ® is the Gaussian PDF, w; is the mixture weight, p, is the mean vector, and X; is the covariance
matrix for Gaussian component 4.

When a discrimination between real and fake images is needed, the discriminator first encodes the
input image « into the embedding e. Then, a likelihood [k (e) is calculated for this embedding. [k (e)
will be interpreted as the probability of e being an embedding of a real image, given the current model.

Generator: The generator G in MD-GAN is a regular neural network decoder, decoding a random
noise z from a random distribution P, into an image.

2.3 The Mixture Density GAN Objectives

Denoting the encoding (output of the encoder, also referred to as the embedding) of an image x by
discriminator D as D(x), we propose the MD-GAN’s objectives as follows:

mci;n max L(G, D) =
mén mgx Ea:wpdam [ log(lk( ( )))} )
+ Ezwpz [IOg()‘ ]

where the likelihood lk(e) for the given image embedding e = D(x) is as defined in Eq.(I). We set
A to be the maximum value of the likelihood function [k in order to have only positive values in the
logarithm in Eq.(2) (see also Experimental Setup Section.)

3 Empirical Results

The results of mode-collapse experiments are provided in Figure [2] and the experimental results
evaluated with FID can be found in Table[I] These results are obtained by using only a simple
DCGAN [15]architectures with limited number of parameters that are usually used to demonstrate
the abilities of an objective in achieving high-quality image generation. As can be seen, MD-GAN
discovers all modes in the synthetic dataset and achieves the lowest (best) FID among all baselines.
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Figure 2: a-e) Examples generated on our synthetic dataset via different methods. Results of c-d are
taken from [10].



Table 1: On the left: FIDs on different datasets from different methods. *) Results from[11] which
are best FIDs obtained in a large-scale hyper-parameter search for each data set. Lower FID values
represent higher quality for generated images. On the right: Results of mode collapse experiments on
2D-grid of 25 Gaussians. All the results are the average of 5 runs.

| MNT | EMNT | CFR | Clb

Real * 12 26 51 | 22 | modes | %hq
Vanilla [6] 67 | 266 | 3586 | 380 Vanilla [6] 33 05
WGAN [2] 68 | 180 | 559 | 429 ALI [4] 15.8 1.6

WGAN-GP[7] | 89 | 206 | 529 | 268 Unrol. [13] | 23.6 16

DRAGAN[9] | 77 | 260 | 685 | 414  VEEGAN [16] | 24.6 40
BEGAN[3] | 123 | 332 | 714 | 38.1 MD-GAN 25 | 99.36+2.28
MD-GAN | 629 | 11.79 | 36.80 | 24.51

4 Conclusion

In this paper, we proposed a novel GAN variant called Mixture Density GAN, which succeeds in
generating high-quality images and in addition alleviates the mode collapse problem by allowing the
Discriminator to form separable clusters in its embedding space, which in turn leads the Generator
to generate data with more variety. We analysed the optimum discriminator and showed that it
is achieved when the generated and the real distribution match exactly and further discussed the
relations to the vanilla GAN. We demonstrated the ability of Mixture Density GAN to deal with
mode collapse and generate realistic images using a synthetic dataset and 4 image benchmarks.
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