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Abstract

The need for large scale and high fidelity simulated samples for the extensive
physics program of the ATLAS experiment at the Large Hadron Collider motivates
the development of new simulation techniques. Building on the recent success of
deep learning algorithms, Variational Auto-Encoders and Generative Adversarial
Networks are investigated for modeling the response of the ATLAS electromag-
netic calorimeter for photons in a central calorimeter region over a range of en-
ergies. The properties of synthesized showers are compared to showers from a
full detector simulation using Geant4. This feasibility study demonstrates the po-
tential of using such algorithms for fast calorimeter simulation for the ATLAS
experiment in the future and opens the possibility to complement current simula-
tion techniques. To employ generative models for physics analyses, it is required
to incorporate additional particle types and regions of the calorimeter and enhance
the quality of the synthesised showers.

1 Introduction

The extensive physics program of the ATLAS experiment [I] at the Large Hadron Collider [J]
relies on high-fidelity Monte Carlo (MC) simulation as a basis for hypothesis tests of the underlying
distribution of the data. One of the key detector technologies used for characterizing collisions are
calorimeters, measuring the energy and location of both charged and neutral particles traversing
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the detector. Particles will lose their energy in a cascade (called a shower) of electromagnetic and
hadronic interactions with a dense absorbing material. The number of the particles produced in these
interactions is subsequently measured in thin sampling layers of an active medium.

The deposition of energy in the calorimeter due to a developing shower is a stochastic process that
can not be described from first principles and rather relies on a precise simulation of the detector
response. It requires the modeling of interactions of particles with matter at the microscopic level
as implemented using the Geant4 toolkit [B]. This simulation process is inherently slow and thus
presents a bottleneck in the ATLAS simulation pipeline [2].

To meet the growing analysis demands, ATLAS already relies strongly on fast calorimeter simula-
tion techniques based on thousands of individual parametrizations of the calorimeter response in the
longitudinal and transverse direction given a single particle’s energy and pseudorapidity® [S]. The
algorithms currently employed for physics analyses by the ATLAS collaboration achieve a signif-
icant speed-up over the full simulation of the detector response at the cost of accuracy. Current
developments [6—8] aim at improving the modeling of tau leptons, jet-substructure-based boosted
objects or wrongly identified objects in the calorimeter and will benefit from an improved detector
description following data taking and a more detailed forward calorimeter geometry.

In recent years, deep learning algorithms have been demonstrated to accurately model the underlying
distributions of rich, structured data for a wide range of problems, notably in the areas of computer
vision, natural language processing and signal processing. The ability to embed complex distribu-
tions in a low dimensional manifold has been leveraged to generate samples of higher dimensionality
and approximate the underlying probability densities. Among the most promising approaches to gen-
erative models are Variational Auto-Encoders (VAEs) [9, T0] and Generative Adversarial Networks
(GANG5s) [T], shown to simulate the response of idealized calorimeters [[2-14].

We present the first application of such models to the fast simulation of the calorimeter response of
the ATLAS detector [I5], demonstrating the feasibility of using such algorithms for large scale high
energy physics experiments in the future, and open the possibility to complement current techniques.
The presented studies focus on generating showers for photons over a range of energies in the central
region of the electromagnetic calorimeter. Through the simplifications made, it is possible to focus
on narrow regions of the calorimeter and neglect the dependence of the calorimeter response on the
incident particle’s pseudorapidity.

2 ATLAS calorimeter

The ATLAS experiment at the LHC is a multipurpose particle detector with a forward-backward
symmetric cylindrical geometry, covering nearly hermetically the full 47 solid angle by combining
several sub-detector systems installed in layers around the interaction point. It comprises a calorime-
ter system that is segmented into a matrix of three dimensional cuboids with varying shape and size,
as illustrated in Fig. . Our work focuses on the electromagnetic (EM) calorimeter, providing en-
ergy measurements for || < 2.5 with high granularity and longitudinal segmentation into multiple
layers, capturing the shower development in depth. In the following, front, middle and back refer to
the three layers in the central region of the EM barrel. In the region of |n| < 1.8, the ATLAS exper-
iment is equipped with a presampler detector to correct for the energy lost by electrons and photons
upstream of the calorimeter and thus to improve the energy measurements in these regions. The de-
tailed structure of the calorimeter system influences the architecture of the deep studied generative
models. Out of the EM barrel layers, the middle layer is the deepest and receives the maximum en-
ergy deposit from EM showers. The front layer is thinner and exhibits a fine granularity in || < 1.4
(eight times finer than the middle layer), but four times less granular in ¢. In the back layer less
energy is deposited compared to the front and middle layers.

"ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the
centre of the detector and the z-axis along the beam pipe. The z-axis points from the IP to the centre of the
LHC ring, and the y-axis points upwards. Cylindrical coordinates (r, ¢) are used in the transverse plane, ¢
being the azimuthal angle around the z-axis. The pseudorapidity is defined in terms of the polar angle € as

n = —Intan(6/2). Angular distance is measured in units of AR = /(An)? 4+ (A¢)2.
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Figure 1: Illustration of possible alignments in ¢ for the front layer, (left, showing a 8 x 3 portion
of the 56 x 3 cell image) and the back layer (bottom, showing a 4 x 1 portion of the 4 x 7 cell
image) with respect to the middle layer (center, showing the full 7 x 7 image). The front (back)
layer are visualized to the left (bottom) of the middle layer to illustrate the alignments in ¢ (7)), but
are actually one behind another in the third dimension.

3 Monte Carlo samples and preprocessing

The ATLAS simulation infrastructure, consisting of event generation, detector simulation and dig-
itization, is used to produce and validate the samples of single unconverted photons used for our
studies. The samples are generated for nine discrete particle energies logarithmically spaced in the
range between approximately 1 and 260 GeV and uniformly distributed in 0.20 < |n| < 0.25. Each
simulated sample contains up to 10000 generated events, totaling approximately 90000 events avail-
able for training and validation of the generative models. Alongside the energy deposited in the
calorimeter cells, the detailed spatial position of each energy deposit is saved.

The showers originating from photons deposit almost their entire energy in the EM calorimeter and
show little leakage into the hadronic calorimeter. Therefore only layers of the EM calorimeter are
considered. Considering calorimeter cells as cuboids, for each layer the energy deposits within a
rectangular selection are selected. The dimension of the rectangle for the middle layer is chosen
to be 7 x 7 cells in n x ¢, with the cell hit by truth particle being in the center of the array. This
selection contains more than 99 % of the total energy deposited by a typical shower in this layer.
The dimensions of the remaining layers are chosen such that the spread in 7 and ¢ of the middle
layer rectangle is covered. The dimensions for the presampler, front and back layer are 7 x 3, 56 x 3
and 4 x 7, respectively. All cells are selected with respect to the impact cell, defined as the cell in
the middle layer closest to the extrapolated position of the photon, taking into account two possible
alignments of the back layer and four possible alignments of the presampler and front layer with
respect to the impact cell in the middle layer when considering the simplified cuboid geometry. This
is illustrated in Fig. . In total the energy deposits in 266 cells are considered. For training the neural
networks, the energy values are normalized to the energy of the incident particle.

4 Algorithms

The explored VAE (Fig. I4) is composed of two stacked neural networks, each comprising of 4
hidden layers, acting as encoder and decoder respectively. The number of units per layer decreases
for subsequent layers of the encoder and increases for the decoder. The implemented algorithm is
conditioned [I[6, 7] on the energy of the incident particle to generate showers corresponding to a
specific energy. After training the model, the decoder can be used independently of the encoder
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Figure 2: Schematic representation of the architecture of the studied [a] VAE and [b] GAN.

to generate new calorimeter showers by sampling from the prior probability density function of
the latent space. The encoder and decoder networks are connected and trained together with mini-
batch gradient descent using RMSProp [[8]. The training maximizes the variational lower bound
on the marginal log-likelihood for the data, approximated with reconstruction loss and the Kullback-
Leibler divergence [I9]. For fast calorimeter simulation, the objective function is further augmented
with additional terms related to the total energy deposition of a particle and the fraction of the
energy deposited in each calorimeter layer. The model is implemented in Keras 2.0.8 [20] using
TensorFlow 1.3.0 [21] as the backend. The training of the VAE converges in 100 epochs within
2min using the full available training statistics on a Intel® Core™ i7-7500U Processor with a
processor base frequency of 2.70 GHz and reading the training data from memory with a clock
speed of 1867 MHz. Trainings for the hyperparameter optimization are performed in parallel on
multiple CPUs. The last epoch of the training is used for synthesizing the presented showers.

Originally developed for generating realistically looking natural images [T1], GANs have a wide
range of applications including calorimeter simulation [[2?-14]. The explored algorithm is com-
posed of two neural networks, a generator and a discriminator (Fig. ZB). The model is conditioned
on the energy of the incident particle and the alignments the calorimeter cells in 7 and ¢. The
generator and discriminator networks are trained together with mini-batch gradient descent using
the Adam optimizer [22]. To introduce a measure of the distance between the true and synthesized
showers and to increase the quality of the generated showers, the Wasserstein distance [23, 4] is
used in the loss function [5, P6]. The Lipschitz constraint of the discriminator is enforced through
employing a two-sided gradient penalty [25]. The model is implemented in Keras 2.0.8 [20] using
TensorFlow 1.3.0 [21] as the backend. The training of the GAN, that is the discriminator and gen-
erator networks, converges in 50000 epochs within 7h using approximately 5 % of the available
training statistics on a NVIDIA® Kepler™ GK210 GPU with a processing power of 2496 cores,
each clocked at 562 MHz. The card has a video RAM size of 12 GB with a clock speed of 5 GHz.
The training data is read from memory. Trainings for the hyperparameter optimization are performed
in parallel on multiple GPUs. It is expected to increase the number of showers used for the training



while decreasing training times when fully utilising the distributed training capabilities and optimiz-
ing the data processing pipeline. The last epoch of the training is used for synthesizing the presented
showers. Epoch-picking will be investigated in the future to cope with epoch-to-epoch fluctuations.

5 Results

For incident particles with varying energy, the models are trained to generate the corresponding
calorimeter showers, i.e. the energy deposits in the 266 calorimeter cells considered in our setup.
To assess the quality of the generation, the synthesized calorimeter showers are compared to the
full detector simulation. Due to the stochastic nature of the shower development in the calorimeter,
no individual shower can be compared. Instead, significant cumulative distributions used during
the event reconstruction and particle identification, such as the total energy, the energy deposited in
each calorimeter layer, and the relative distribution of energies in the calorimeter cells, are compared.
These distributions typically correspond to projections of the data or moments computed from the
magnitude and spatial position of the energy deposits. To quantify the agreement of the synthesized
showers with the full detector simulation a x? test is performed for each of these distributions.

As an example, Fig. B shows the total energy deposited in the middle layer of the calorimeter,

Ey= Y By, (1)
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as well as their spatial distribution for photons with an energy of approximately 65 GeV in the range
0.20 < |n| < 0.25. Both VAE and GAN accurately describe the bulk of generated distributions, but
the agreement in the tails of the distributions is reduced. The models reproduce the reference average
lateral shower shape within a precision of approximately 20 to 40 % with differences increasing with
the distance from the shower center.

The mean shower shape measured inside the calorimeter layers depends strongly on the longitudinal
shower profile in the calorimeter and is used for example to distinguish photons from electrons. The
modeling of the longitudinal shower development is shown for photons with an energy of approxi-
mately 65 GeV in the range 0.20 < |n| < 0.25 in Fig. Bd. The reconstructed longitudinal shower
center, in the following referred to as shower depth, is calculated from the energy weighted mean of
the longitudinal center positions djayer of all calorimeter layers,

1
d=— Z E;d,;. (2)
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Both VAE and GAN reproduce the shape of shower depth simulated by Geant4, but the distribu-
tions computed from the synthesized showers are shifted with respect to the Geant4 ones. This
effect is explained by the mismodeling of the correlations between the energy deposits in the var-
ious calorimeter layers and the challenges posed by layers with low (and sparse) energy deposits,
i.e. showers starting not at the surface of the calorimeter.

Figure Ba shows the total energy response of the calorimeter to photons with an energy of approxi-
mately 65 GeV in the range 0.20 < || < 0.25,

E= Y Y Ej 3)
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Figure BH shows the simulated energy as a function of true photon energy. Both VAE and GAN
reproduce the mean shower energy simulated by Geant4. The modeling of the total energy response
reflects the modeling of the underlying distributions, i.e. the energy deposited in the calorimeter
layers, and enhances the mismodeling of the tails due to underestimating the underlying correlations
observed in these. Both generative models simulate a wider spread of energies than Geant4. The
GAN reproduces better the correlations between the energy deposits in the different layers, and
therefore shows a smaller spread than the VAE.
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Figure 3: [a) Energy deposited in the middle layer of the calorimeter as well as the average distribu-
tion as a function of the distance in [B] 1 and [C] ¢ from the impact point of the particle and [d] the
reconstructed longitudinal shower center for photons with an energy of approximately 65 GeV in
the range 0.20 < |n| < 0.25. The chosen bin widths in [B] and [c] correspond to the cell widths
in the calorimeter layer. The energy depositions from a full detector simulation (black markers) are
shown as reference and compared to the ones of a VAE (solid red line) and a GAN (solid blue line).
The shown error bars and the hatched bands indicate the statistical uncertainty of the reference data
and the synthesized samples, respectively. The underflow and overflow is included in the first and
last bin of each distribution, respectively.
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Figure 4: Total energy response of the calorimeter to photons with an energy of approximately
65 GeV in the range 0.20 < |n| < 0.25. The calorimeter response for the full detector simulation
(black markers) is shown as reference and compared to the ones of a VAE (solid red line) and a GAN
(solid blue line). The shown error bars and the hatched bands indicate the statistical uncertainty of
the reference data and the synthesized samples, respectively. The underflow and overflow is included
in the first and last bin of each distribution, respectively. [B] Energy response of the calorimeter as
function of the true photon energy for particles in the range 0.20 < |n| < 0.25. The calorimeter
response for the full detector simulation (black markers) is shown as reference and compared to the
ones of a VAE (red markers) and a GAN (blue markers). The shown error bars indicate the resolution
of the simulated energy deposits.

6 Conclusions

We present the first application of generative models for simulating particle showers in the ATLAS
calorimeter. Two algorithms, a VAE and a GAN, have been used to learn the response of the EM
calorimeter for photons with energies between approximately 1 and 260 GeV in the range 0.20 <
|n] < 0.25. The properties of synthesized showers show promising agreement with showers from
a full detector simulation using Geant4, demonstrating the feasibility of using such algorithms for
fast calorimeter simulation for the ATLAS experiment in the future and opening the possibility to
complement current techniques. In addition to conditioning the algorithms on different particle types
and incorporating other regions of the calorimeter, further studies are needed to achieve the required
accuracy for employing the algorithms for physics analyses.

A ATLAS simulation infrastructure

The ATLAS simulation infrastructure, consisting of event generation, detector simulation and
digitization, is used to produce and validate the samples used for the studies presented in this
note. Samples of single unconverted photons are simulated using Geant4 10.1.patch03.atlas02,
the standard MC16 RUN2 ATLAS geometry (ATLAS-R2-2016-01-00-01) with the conditions
tag OFLCOND-MC16-SDR-14. The simulation employs the FTFP_BERT physics list [277], i.e. uses
the Geant4 Bertini-style cascade [28-30] to simulate hadron-nucleus interactions at low incident
hadron energies, and the Fritiof parton string model [31, B7] at higher energies, followed by the
Geant4 precompound model to de-excite the nucleus. Specific to the version used by ATLAS is that
the handover between the models is performed in the energy region between 9 GeV and 12 GeV.



B Loss functions and domain knowledge

B.1 VAE

The evidence lower bound, i.e. the negative of the VAE loss, reads

logp(z) = Eqgy(z|e) [log pe(z[2)] — KL(go(2]7)|p(2)), )

where the Kullback-Leibler divergence, measuring the divergence between gy(z|z) and the prior
probability density function p(z), is defined as

KL(go(z|2)llp(2)) = ZM?(%) + 07 (i) — log(oy (i) — 1 ®)

with p; and o; entering g4(z/x) as the normal distribution N (z|p, o). For fast calorimeter simula-
tion, the objective function is augmented with additional terms related to the total energy deposition
of a particle,

k k
Lpg(2,8) = Y =Y & 6)
i=1 i=1
and the fraction of the energy deposited in each calorimeter layer,
N; Ni -
L T
Lp,(x,7) = ‘ Zi;l - — Z,j‘l — (7
doim1 T 2j=(T5)

with the number of cells per shower shower, k, and the number of cells, N;, in the ¢-th of M
calorimeter layer. The full loss function then is

M
LaE(2, ) = Wreco Bz gy (=0) 108 Py (2] 2) —wi . KL(qo (2[2) | |p(2)) +wE, L, (2, )+ wiLg, (z, ).

L

Each term of the loss function is scaled by a weight, controlling the relative importance of the con-
tributions during the optimization of the model. For example, the KL divergence acts as a regular-
ization and changing its weight in the interval (0, 1] affects directly the generated distributions. The
maximum value for the KL weight is 1, at which the loss becomes equivalent to the true variational
lower bound, see Eq. B.

B.2 GAN

The loss of the discriminator minimized in the training of the GAN reads

Loax=_E [D@)] - E [D@)]+A E [([|A:D()l]2— 1)?]. ©)

T~ Pgen T~ PGeantd

The term _E [D(Z)] represents the discriminator’s ability to correctly identify synthesized show-

E~Pgen

ers, whiletheterm E  [D(x)] represents the discriminator’s ability to correctly identify showers
L~ PGeant4

from Geant4. The last term in the loss function, A E [(||AzD(2)|]2—1)?], is the two-sided gradient
T~Pz

penalty, where % is a random point on the straight line connecting a point from the real distribution

DGeans and generated distribution pgep.



C Hyperparameter optimization

Tables [ and @ summarize the results of the grid search performed to optimize the hyperparameters
of the VAE and GAN respectively. The parameters with the largest effect on the quality of the
synthesized showers for the VAE are the weights considered for the various terms in the loss function
and the dimension of the latent space. For the GAN the parameters with the largest effect on the
quality of the synthesized showers are the choice of the activation functions and the conditioning.

Table 1: Summary the results of the grid search performed to optimize the hyperparameters of the
VAE for simulating calorimeter showers for photons. The optimal parameter is typeset in bold font.

Hyperparameter Values
Latent space dim. [1,...,10,...,100]
Reco. weight ©,...,1,...,3]
KL weight ©,...,10%,...,1]
E, weight [0,...,102, ..., 1]
[0,....,8x102,...,1]
. 0,...,6x101, ... 1]
E; weight [0, SEEE
WEIghs [0,...,2x 10", ..., 1]
[0,...,107, ... 1]

Hidden layers (encoder) 1,2,3,4,5

Hidden layers (decoder) 1,2,3,4,5
[180, ...,200,...,266]
[120,...,150,...,180]

Units per layer [80,....100, ... 120]
[10,...,50,...,80]
Activation func. ELU [33], ReLLU [B3], SELU [34] , LeakyReLU [35], PReLU [36]

zeros, ones, random normal, random uniform, truncated normal,
variance scaling, glorot_normal [37]
zeros, ones, random normal, random uniform, truncated normal,

Kernel init.

Bias init. . . -
variance scaling, glorot_normal [37]
Optimizer RMSprop [I8], Adam [?2], Adagrad [38], Adadelta [39], Nadam [40, &1
Learning rate [102,...,10%, ..., 10°]
Mini-batch size 50, 100, 150, 1000




Table 2: Summary the results of the grid search performed to optimize the hyperparameters of the
GAN for simulating calorimeter showers for photons. The optimal parameter is typeset in bold font.
In addition to the architectures summarized in the table, generators and discriminators with differing
number of hidden layers and units per layer were tested.

Hyperparameter Values
Hidden layers 1,3,5,10
Units per layer 64, 128, 512, 1024
SELU [B4] + Sigmoid, LeakyReLU [B5] + {Sigmoid, ReLU [33],
Activation func. Gauss, Sigmoid + ReLU, clipped ReLU, softmax,
softmax + ReLU}
Activity L1_REG_WEIGHT (Gen.) 0,105, 107
Kernel init. glorot_uniform [B7], lecun_normal [&7]]
Gradient penalty one-sided, two-sided
Gradient penalty weight 0, 10, 20
Training ratio 20, 10,5,3,1
5% 10,5 x 10, 1 x 10°® (training ratio 5)
Learning rate 5% 10°,5x 10,1 x 103, 1 x 107 (training ratio 3)
1 x 10 (training ratio 1)
Mini-batch size 64, 1024
Preprocessing (all norm. to E,)  logg Ecenn, logo(FEeen X 10%9), Eeen
Conditioning {E,,log,y,E~} + multi-hot encoding of cell alignments
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