
Automatic Depth Determination for Bayesian ResNets

Eric Nalisnick
Department of Engineering
University of Cambridge

e.nalisnick@eng.cam.ac.uk

José Miguel Hernández-Lobato
Department of Engineering
University of Cambridge,

Microsoft Research Cambridge,
Alan Turing Institute
jmh233@cam.ac.uk

1 Introduction

The size of neural networks (NNs) is increasing at a steady pace, and as these models gain ever more
capacity, proper regularization and model selection become increasingly important. Currently, a deep
learning practitioner often needs a GPU cluster to thoroughly search over architectures, regularization
strength, and other hyper-parameters. Automatic methods for hyper-parameter tuning based on
genetic algorithms [19], reinforcement learning [32], and Bayesian optimization [25] have achieved
some success but still can be slow simply due to the challenges of combinatorial optimization.
Bayesian inference presents an alternative approach that integrates over parameter uncertainty to
find the most suitable model. This is known as the evidence framework [16] and has been called the
occam’s razor effect of Bayesian inference [17, 20].

Automatic relevance determination (ARD) [18, 22, 28] is the best known Bayesian method that can
automatically tune the size of a neural architecture. Specifically, ARD selects a NN’s number of
hidden units by placing structured priors on the NN’s weights. Denoting a weight in row i and column
j as wi,j , the ARD prior is defined as

wi,j ∼ N(wi,j ; 0, σ2
0λi), λi ∼ p(λi), (1)

where σ2
0 is a constant, λi is a random scalar, and p(λi) is a hyper-prior acting on the first-level

Gaussian prior’s variance. The crucial detail is that each λi has a row index i, meaning that all of the
weights occupying the same row of the weight matrix share the same scale. If p(λi) places sufficient
density near zero, then Bayesian inference can shrink entire rows of weights, effectively pruning
them from the NN. Figure 1 shows how the ARD prior partitions a weight matrixW : the red lines
denote the groups that share the same scale (i.e. the rows).

In this paper, we propose a novel ARD-inspired framework that can automatically select the number
of layers in a residual network [9]. We term the framework automatic depth determination (ADD) as
it naturally extends ARD to layers. Moreover, we derive a light-weight EM algorithm to perform
approximate inference under ADD priors. The algorithm can be implemented in only a few additional
lines of code to most Bayes-by-backprop-style [2] implementations.

2 Automatic Depth Determination

Residual networks (resnets) [9] are NNs with residual connections (a.k.a. skip connections) [14, 9, 27]
between their hidden layers. Residual connections simply add the previous hidden state to the usual
non-linear transformation: hl = fl(hl−1Wl + bl) + hl−1 where hl denotes a vector of hidden
units at layer l,Wl the weights, bl the bias parameters, and fl the activation function. Resnets have
achieved a notable jump in performance on object recognition benchmarks and enabled the training
of NNs with 1000+ layers [9].

Third workshop on Bayesian Deep Learning (NeurIPS 2018), Montréal, Canada.

Since a residual connection allows information to bypass the non-linear transformation, entire
weight matrices can be shrunk to zero without obstructing the NN’s forward propagation. Thus
we can create a prior that selects for layers by tying the variance of all weights in the same matrix.

Figure 1: Structure of ARD
and ADD Priors

By collectively shrinking all the weights in coordination, we can reduce
the layer’s influence, effectively pruning it in the case of absolute
shrinkage to zero. We term this prior automatic depth determination
(ADD) as it is the natural analog of ARD for network depth. ADD is
specified as

wl,i,j ∼ N(wl,i,j ; 0, σ2
0τl,·,·), τl,·,· ∼ p(τl), (2)

where we have introduced the variable τl,·,· that acts as a per-layer
group variance. We denote this structure by giving τ a layer index
l but not a row or column index. Figure 1 shows the ADD prior’s
structure in comparison to ARD: the blue box encloses all weights
with the same scale. As p(τl) places more density near zero, Bayesian
inference will increasingly prefer to prune whole weight matrices, i.e.
hl ≈ fl(hl−10) + hl−1 = hl−1 (assuming fl is a ReLU and ignoring
the bias term), making the network effectively more shallow.

Combining ARD and ADD Yet if Bayesian inference does not decide to prune all of the weights
of a layer, regularization still may be necessary. The natural progression is to then select the layer’s
number of hidden units—as ARD does. Therefore it makes sense to combine ARD and ADD so that
the former takes effect when the latter imposes little to no regularization. The joint ARD-ADD prior
is specified as

wl,i,j ∼ N(wl,i,j ; 0, σ2
0λl,i,·τl,·,·), λl,i,· ∼ p(λl,i), τl,·,· ∼ p(τl). (3)

The priors remained essentially unchanged from their original definitions in Equations 1 and 2. The
two multiplicatively interact in the first-level prior’s variance, and therefore when τl → 0, the product
λl,iτl ≈ 0, effectively turning off the influence of ARD. Conversely, when τl > 0, then ARD will act
as usual but have its effect modified by a factor of τl.

Choosing the Hyper-Priors Having defined the structure of the priors, the next point of consid-
eration is which distributions to choose for p(λ) and p(τ). As pointed out by Neal [22], NNs with
Gaussian priors converge to Gaussian processes (GPs) as the network width increases. This can be
undesirable because the influence of each hidden unit is diminished, which then stifles the NN’s ability
to represent latent features. Neal [22] proposes using the inverse gamma as the ARD hyper-prior, in
turn making the marginal distribution on the weights a student’s-t. The student’s-t’s heavy tails slow
or entirely halt (depending on the setting of the degrees of freedom) the aforementioned convergence
to a GP. For even stronger shrinkage, Carvalho et al. [4] and Gelman [7] recommend the half-Cauchy
prior on the Gaussian’s scale. The resulting marginal distribution is known as the horseshoe prior,
and it has several beneficial properties such as bounded influence [3]. A stronger prior still is the
log-uniform distribution of the form p(τ) ∝ 1/τ . Williams [30] and Toussaint et al. [29] recommend
this prior for Bayesian NNs due to its invariance properties, and Kingma et al. [13] derived the
prior from a Bayesian interpretation of dropout [26]. Figure 2 (a) shows the densities of the three
hyper-priors discussed.

3 Inference via Generalized Variational EM

Unfortunately, even approximate inference for scale mixture priors can be challenging—especially
when the hyper-priors are half-Cauchy or log-uniform. Previous work performing variational in-
ference for these and similar priors has had to incorporate truncated approximations [24], auxiliary
variables [8, 15], non-centered parametrizations [12, 8, 15], and quasi-divergences [11] for the sake
of tractability. Instead, we opt for a light-weight inference procedure derived through variational
expectation-maximization (VEM) [1]. For most variational Bayesian NN implementations, using
VEM with ADD or ARD priors can be implemented in a few lines of code—possibly in as little as
one.

Below we detail the inference procedure for ADD, leaving the description of inference for the
ARD-ADD prior to Appendix B. Following Wu et al. [31], we assume the posterior approximation

2

(a) Hyper-Priors (b) EM Updates for Variance

Figure 2: Hyper-Priors and EM Updates. Subfigure (a) shows the density functions of the three
hyper-priors considered: half-Cauchy, log-uniform, and inverse gamma. Subfigure (b) shows the EM
updates for the posterior variance as a function of q(W)’s parameters.

Test Set RMSE
Dropout [6] Prob. Backprop [10] ARD ADD ARD-ADD

Boston Housing 2.80± 0.13 2.795± 0.16 2.223± 0.28 2.221± 0.27 2.208± 0.30
Energy Efficiency 0.47± 0.01 0.903± 0.05 0.852± 0.12 0.855± 0.08 0.796± 0.15
Yacht 0.66± 0.06 0.848± 0.05 0.938± 0.08 0.801± 0.10 0.793± 0.07

Table 1: Test Set RMSE. We compare test set RMSE for three UCI regression data sets. As baselines,
we use previously reported results for dropout [6] and probabilistic backpropagation [10] applied to
two-hidden-layer networks. Our results use the log-uniform prior in all cases.

p(W , τ |y,X) ≈ q(W ;φ)q(τ) = N(W ;µφ, daig{Σφ})δ[τ̄l]1 where φ = {µφ, diag{Σφ}} and
τ̄l are the variational parameters. The evidence lower bound (ELBO) for this approximation is

log p(y|X) ≥ Eq(W) [log p(y|X,W)]− Eq(τ)KL [q(W ;φ)||p(W |τ)]− KL [q(τ)||p(τ)]

= EN(W) [log p(y|X,W)]− KL [N(W ;φ)||N(W |τ̄l)]− KL [δ[τ̄l]||p(τ)]

= EN(W) [log p(y|X,W)]− KL [N(W ;φ)||N(W |τ̄l)] + log p(τ̄l) + C,
(4)

where C = H[δ[τ̄l]] is a constant. For the three hyper-priors we consider, τ̄l has a closed-form solution
that can be found by differentiating the ELBO and setting to zero:

∂

∂τ̄l
JELBO(φ, τ̄l) = − ∂

∂τ̄l
KL [N(W ;φ)||N(W |τ̄l)] +

∂

∂τ̄l
log p(τ̄l) = 0. (5)

We denote the solution to Equation 5 as τ̄∗l and give its formula for each hyper-prior in Appendix A.
No closed-form exists for updating q(W ;φ), and hence we perform gradient ascent updates using

∂

∂φ
JELBO(φ, τ̄∗l) =

∂

∂φ
EN(W ;φ) [log p(y|X,W)]− ∂

∂φ
KL [N(W ;φ)||N(W |τ̄∗l)] . (6)

Since the M-step for φ in our VEM framework is incremental, we are technically performing
generalized VEM [23]. Figure 2 (b) shows the value for τ̄∗l as a function of the variational parameters
µφ and σ2

φ. The slope and intercept of each line convey the prior’s shrinkage properties. Only the
log-uniform and half-Cauchy provide true sparsity, allowing for τ̄∗l = 0 when µ2

φ + σ2
φ = 0, no

matter the setting of the prior’s scale. The inverse Gamma, on the other hand, can set τ̄∗l = 0 only in
the limit as α→ 0 and β → 0.

4 Experiments

We first test our proposed priors and their EM algorithm on benchmark regression tasks from the UCI
repository [5]. We report test set RMSE in Table 1 for the Boston housing, energy efficiency, and

1We assume δ[τ̄l] is a pseudo-Dirac delta [21] so that the distribution has finite entropy.

3

(a) ARD Posterior (b) ADD Posterior (c) ARD-ADD Posterior

Figure 3: Posterior Structure. The heatmaps above show the posterior structure inferred by the three
structured priors considered. We plot the sum of moments µ2 +σ2 in order to visualize each weight’s
ability to deviate from zero.

(a) Inverse Gamma (α = 1, β = 1) (b) Half-Cauchy (µ = 0, η = 2) (c) Log-Uniform

Figure 4: Regression on Yacht Data Set. Results for Bayesian resnets with ADD and ARD-ADD
priors are shown for the yacht data set from the UCI repository [5]. The number of hidden layers
(x-axis) is varied from two to five to test if the network can remain robust despite changes in depth.

yacht hydrodynamics data sets. A NN with only ARD priors and previously reported dropout [6]
and probabilistic backpropagation [10] results serve as baselines. All NNs have two hidden layers,
and our ARD, ADD, and ARD-ADD implementations use only the log-uniform prior, as it has no
hyperparameters and we wanted to test its utility as a default prior. q(W ;φ) was set as a factorized
Gaussian. We used the same optimization settings that Gal & Ghahramani [6] used for their two-layer
results (batch size of 32, 4000 epochs, default Adam settings, averaged over twenty 90% − 10%
train-test splits). From the table, we see that dropout is a strong baseline and performs best in two out
of the three data sets. However, both ADD and ARD-ADD outperform probabilistic backpropagation
in all cases and have better RMSE than dropout on Boston housing (2.208 vs 2.80). Furthermore, we
see that using the joint ARD-ADD prior is an improvement over ADD for all three data sets, which is
expected since it combines the benefits of ARD and ADD.

Next we examine the posterior structure of the Bayesian NNs from Table 1. Figure 3 shows heat
maps for the hidden-to-hidden weight matrices when given each prior. The colors are determined
by the summed posterior moments µ2

φ + σ2
φ as this quantifies the ability of the parameter to deviate

from zero. From subfigure (a), we see that the ARD prior works as depicted in Figure 1: each row
learns an independent scale and some rows become almost entirely shrunk (dark blue). Subfigure (b)
shows the ADD posterior. ADD shares one scale across the entire matrix, and we see evidence of
this in matrix’s uniform blue coloring. Lastly, the ARD-ADD posterior is shown in Subfigure (c).
Interestingly, the outgoing weights of only one hidden unit remained active, as shown by the line
containing a mixture of reds, whites, and blues. The rest of the weights shrunk to near zero (dark
blue). This demonstrates the power of the joint prior since a few rows can have large scales while the
rest of the matrix remains shrunk. ADD cannot do this since the one row with large weights increases
the scale of all the other rows. Conversely, ARD shares no information across rows, but this makes it
unlikely to shrink and prune aggressively.

4

Lastly, we test how well ADD and ARD-ADD can make a NN robust to depth. Regression experiments
on the yacht data set from the UCI repository [5] are reported in Figure 3. The x-axis shows the
number of hidden layers (2−5), and the y-axis represents test set log likelihood as computed from the
posterior predictive distribution (1000 Monte Carlo samples). q(W ;φ) was again set as a factorized
Gaussian. Results are shown for ADD and ARD-ADD priors for the three hyper-priors discussed.
The blue lines denote the performance of a Bayesian resnet with a fixed variance that we chose based
on test set performance over the set σ2

0 = {.1, .5, 1, 2, 5, 10}. We see that ADD and ARD-ADD were
able to best the test-set-chosen variance in each case. The ARD-ADD prior performed better than the
ADD prior in each case as well, but the differences are within statistical error.

Conclusions We have proposed two structured priors—automatic depth determination (ADD) and
joint ARD-ADD—to enable Bayesian reasoning about a neural network’s depth. Moreover, their
implementation incurs little additional memory or runtime costs to Bayes-by-backprop. Future work
includes experiments on larger data sets, comparison against other variational inference strategies,
and use of structured variational approximations.

References
[1] Matthew J. Beal and Zoubin Ghahramani. The Variational Bayesian EM Algorithm for In-

complete Data: with application to scoring graphical model structures. Bayesian Statistics,
7:453–464, 2003.

[2] Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and Daan Wierstra. Weight Uncertainty
in Neural Networks. In Proceedings of The 32nd International Conference on Machine Learning,
pages 1613–1622, 2015.

[3] Carlos M Carvalho, Nicholas G Polson, and James G Scott. Handling Sparsity via the Horseshoe.
In International Conference on Artificial Intelligence and Statistics, pages 73–80, 2009.

[4] Carlos M Carvalho, Nicholas G Polson, and James G Scott. The Horseshoe Estimator for Sparse
Signals. Biometrika, page asq017, 2010.

[5] Dua Dheeru and Efi Karra Taniskidou. UCI Machine Learning Repository, 2017.

[6] Yarin Gal and Zoubin Ghahramani. Dropout as a Bayesian Approximation: Representing Model
Uncertainty in Deep Learning. In Proceedings of the 33rd International Conference on Machine
Learning, pages 1050–1059, 2016.

[7] Andrew Gelman. Prior Distributions for Variance Parameters in Hierarchical Models (Comment
on Article by Browne and Draper). Bayesian Analysis, 1(3):515–534, 2006.

[8] Soumya Ghosh, Jiayu Yao, and Finale Doshi-Velez. Structured Variational Learning of Bayesian
Neural Networks with Horseshoe Priors. In Proceedings of the 35th International Conference
on Machine Learning, 2018.

[9] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Residual Learning for
Image Recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 770–778, 2016.

[10] José Miguel Hernández-Lobato and Ryan Adams. Probabilistic Backpropagation for Scalable
Learning of Bayesian Neural Networks. In International Conference on Machine Learning,
pages 1861–1869, 2015.

[11] Jiri Hron, Alexander Matthews, and Zoubin Ghahramani. Variational Bayesian Dropout: Pitfalls
and Fixes. In Proceedings of the 35th International Conference on Machine Learning, pages
1–8, 2018.

[12] John Ingraham and Debora Marks. Variational Inference for Sparse and Undirected Models.
In Proceedings of the 34th International Conference on Machine Learning, pages 1607–1616,
2017.

5

[13] Diederik P Kingma, Tim Salimans, and Max Welling. Variational Dropout and the Local
Reparameterization Trick. In Advances in Neural Information Processing Systems, 2015.

[14] K. J. Lang and M. Witbrock. Learning to Tell Two Spirals Apart. In 1988 Connectionist Models
Summer School, 1988.

[15] Christos Louizos, Karen Ullrich, and Max Welling. Bayesian Compression for Deep Learning.
In Advances in Neural Information Processing Systems, pages 3288–3298, 2017.

[16] David Mackay. The Evidence Framework Applied to Classification Networks. Neural Compu-
tation, 4(5):720–736, 1992.

[17] David JC MacKay. Bayesian Interpolation. Neural Computation, 4(3):415–447, 1992.

[18] David JC MacKay. Bayesian Non-Linear Modeling for the Prediction Competition. In Maximum
Entropy and Bayesian Methods, pages 221–234. Springer, 1994.

[19] Geoffrey F Miller, Peter M Todd, and Shailesh U Hegde. Designing Neural Networks using
Genetic Algorithms. In ICGA, volume 89, pages 379–384, 1989.

[20] Iain Murray and Zoubin Ghahramani. A Note on the Evidence and Bayesian Occam’s Razor.
Gatsby Unit Technical Report, 2005.

[21] Shinichi Nakajima and Masashi Sugiyama. Analysis of Empirical MAP and Empirical Partially
Bayes: Can They be Alternatives to Variational Bayes? In Artificial Intelligence and Statistics,
pages 20–28, 2014.

[22] Radford M Neal. Bayesian Learning for Neural Networks. PhD thesis, University of Toronto,
1994.

[23] Radford M Neal and Geoffrey E Hinton. A View of the EM Algorithm that Justifies Incremental,
Sparse, and Other Variants. In Learning in Graphical Models, pages 355–368. Springer, 1998.

[24] Kirill Neklyudov, Dmitry Molchanov, Arsenii Ashukha, and Dmitry P Vetrov. Structured
Bayesian Pruning via Log-Normal Multiplicative Noise. In Advances in Neural Information
Processing Systems, pages 6778–6787, 2017.

[25] Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical Bayesian Optimization of
Machine Learning Algorithms. In Advances in Neural Information Processing Systems, pages
2951–2959, 2012.

[26] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: A Simple Way to Prevent Neural Networks from Overfitting. The Journal of Machine
Learning Research, 15(1):1929–1958, 2014.

[27] Rupesh K Srivastava, Klaus Greff, and Jürgen Schmidhuber. Training Very Deep Networks. In
Advances in Neural Information Processing Systems, pages 2377–2385, 2015.

[28] Michael E Tipping. Sparse Bayesian Learning and the Relevance Vector Machine. The Journal
of Machine Learning Research, 1:211–244, 2001.

[29] Udo v Toussaint, Silvio Gori, and Volker Dose. Invariance Priors for Bayesian Feed-Forward
Neural Networks. Neural Networks, 19(10):1550–1557, 2006.

[30] Peter M Williams. Matrix Logarithm Parametrizations for Neural Network Covariance Models.
Neural Networks, 12(2):299–308, 1999.

[31] A. Wu, S. Nowozin, E. Meeds, R. E. Turner, J. M. Hernández-Lobato, and A. L. Gaunt. Fixing
Variational Bayes: Deterministic Variational Inference for Bayesian Neural Networks. ArXiv
e-prints, 2018.

[32] Barret Zoph and Quoc V Le. Neural Architecture Search with Reinforcement Learning.
International Conference on Learning Representations (ICLR), 2017.

6

A ADD EM Updates

Below we derive the EM updates for the various hyper-priors considered. For all expressions, we
assume the variational distribution on the weights factorizes, i.e. N(W ;φ) =

∏
i

∏
j N(wi,j ;φi,j)

where i denotes row and j column indices.

A.1 Inverse Gamma

We begin with the ELBO terms that depend on the variational variance τ , Equation 4:
JELBO(φ, τ̄l) = −KL [N(W ;φ)||N(W |τ̄l)] + log p(τ̄l)

=
−1

2

∑
i

∑
j

[
log

τ̄l
σ2
i,j

+
σ2
i,j

τ̄l
+
µ2
i,j

τ̄l
− 1

]
+ log Γ−1(τ̄l;α, β)

=
−1

2

∑
i

∑
j

log
τ̄l
σ2
i,j

+
∑
i

∑
j

σ2
i,j + µ2

i,j

τ̄l
−D

− β

τ̄l
− (α+ 1) log τ̄l + log

βα

Γ(α)
.

Differentiating w.r.t. τ̄l and setting to zero, we have

0 =
∂

∂τ̄l
JELBO(φ, τ̄l)

=
−1

2

∑
i

∑
j

1

τ̄l
−
σ2
i,j + µ2

i,j

τ̄2l

+
β

τ̄2l
− α+ 1

τ̄l

=
D

τ̄l
−
∑
i

∑
j σ

2
i,j + µ2

i,j

τ̄2l
− 2β

τ̄2l
+

2α+ 2

τ̄l

2β +
∑
i

∑
j σ

2
i,j + µ2

i,j

τ̄2l
=
D + 2α+ 2

τ̄l

τ̄∗l =
2β +

∑
i

∑
j σ

2
i,j + µ2

i,j

D + 2α+ 2
where D are the number of dimensions (i.e. parameters) inW .

A.2 Half-Cauchy

Starting with Equation 5, we have

0 =
∂

∂τ̄l
JELBO(φ, τ̄l)

=
−1

2

∂

∂τ̄l

∑
i

∑
j

[
log

τ̄l
σ2
i,j

+
σ2
i,j

τ̄l
+
µ2
i,j

τ̄l
− 1

]
+

∂

∂τ̄l
logC+(

√
τ̄l; 0, η)

=
−1

2

∑
i

∑
j

1

τ̄l
−
σ2
i,j + µ2

i,j

τ̄2l

+
∂

∂τ̄l
log

2

πη(1 + τ̄l/η2)

=
D

τ̄l
−
∑
i

∑
j σ

2
i,j + µ2

i,j

τ̄2l
+

2

η2 + τ̄l

=
2τ̄l

η2 + τ̄l
−
∑
i

∑
j σ

2
i,j + µ2

i,j

τ̄l
+D.

Solving2 the above equation for τ̄l gives for a positive solution:

τ̄∗l =
M − η2D +

√
M2 + (2D + 8)η2M + η4D2

2D + 4
where M =

∑
i

∑
j

σ2
i,j + µ2

i,j ,

D is again the dimensionality, and η is the half-Cauchy’s scale.
2We plugged the equation into Wolfram Alpha.

7

A.3 Log-Uniform

Again beginning with Equation 5, we have

0 =
∂

∂τ̄l
JELBO(φ, τ̄l)

=
−1

2

∑
i

∑
j

1

τ̄l
−
σ2
i,j + µ2

i,j

τ̄2l

+
∂

∂τ̄l
log

c

τ̄l

=
D

τ̄l
−
∑
i

∑
j σ

2
i,j + µ2

i,j

τ̄2l
+

2

τ̄l∑
i

∑
j σ

2
i,j + µ2

i,j

τ̄2l
=
D + 2

τ̄l

τ̄∗l =

∑
i

∑
j σ

2
i,j + µ2

i,j

D + 2
.

Notice that this update is the same as the inverse Gamma’s as α→ 0 and β → 0.

B ARD-ADD EM Updates

For approximate posterior inference for the joint ARD-ADD prior, we assume the posterior approxi-
mation

p(W , λ, τ |y,X) ≈ q(W ;φ) q(λ) q(τ) = N(W ;µφ, daig{Σφ}) δ[λ̄i] δ[τ̄l]

where φ = {µφ, diag{Σφ}}, λ̄i, and τ̄l are the variational parameters. The ELBO for this approxi-
mation is

log p(y|X) ≥
Eq(W) [log p(y|X,W)]− Eq(λ)Eq(τ)KL [q(W ;φ)||p(W |λ, τ)]− KL [q(λ)||p(λ)]− KL [q(τ)||p(τ)]

= EN(W) [log p(y|X,W)]− KL
[
N(W ;φ)||N(W |λ̄i, τ̄l)

]
− KL

[
δ[λ̄i]||p(λ)

]
− KL [δ[τ̄l]||p(τ)]

= EN(W) [log p(y|X,W)]− KL
[
N(W ;φ)||N(W |λ̄i, τ̄l)

]
+ log p(λ̄i) + log p(τ̄l) + C

(7)

where C = H[δ[λ̄i]] + H[δ[τ̄l]] is again a constant. Next we must find solutions for both λ̄i and τ̄l.
Again we can differentiate the ELBO and set to zero:

∂

∂λ̄i
JELBO(φ, λ̄i, τ̄l) = − ∂

∂λ̄i
KL
[
N(W ;φ)||N(W |λ̄i, τ̄l)

]
+

∂

∂λ̄i
log p(λ̄i) = 0,

∂

∂τ̄l
JELBO(φ, λ̄i, τ̄l) = − ∂

∂τ̄l
KL
[
N(W ;φ)||N(W |λ̄i, τ̄l)

]
+

∂

∂τ̄l
log p(τ̄l) = 0.

(8)

We denote the solutions as λ̄∗i and τ̄∗l , deriving them for the three hyper-priors below. Again, we
update q(W ;φ) via gradient ascent:

∂

∂φ
JELBO(φ, λ̄∗i , τ̄

∗
l) =

∂

∂φ
EN(W ;φ) [log p(y|X,W)]− ∂

∂φ
KL
[
N(W ;φ)||N(W |λ̄∗i , τ̄∗l)

]
. (9)

8

B.1 Inverse Gamma

Starting with the first line of Equation 8, we have

0 =
∂

∂λ̄i
JELBO(φ, λ̄i, τ̄l)

=
−1

2

∂

∂λ̄i

∑
i

∑
j

[
log

λ̄iτ̄l
σ2
i,j

+
σ2
i,j

λ̄iτ̄l
+
µ2
i,j

λ̄iτ̄l
− 1

]
+

∂

∂λ̄i
log Γ−1(λ̄i;α, β)

=
−1

2

∑
j

1

λ̄i
−
σ2
i,j + µ2

i,j

λ2i τ̄l

+
β

λ̄2i
− α+ 1

λ̄i

=
Di

λ̄i
−
∑
j σ

2
i,j + µ2

i,j

λ̄2i τ̄l
− 2β

λ̄2i
+

2α+ 2

λ̄i

2βτ̄l +
∑
j σ

2
i,j + µ2

i,j

λ̄2i τ̄l
=
Di + 2α+ 2

λ̄i

λ̄∗i =
2βτ̄l +

∑
j σ

2
i,j + µ2

i,j

τ̄l(Di + 2α+ 2)

where Di is the number of parameters in the ith row (i.e. λ’s corresponding row) of the weight matrix
W . Furthermore, notice that the sum over posterior parameters is across only columns (j index).

Moving on the ADD parameter, we begin with the second line of Equation 8:

0 =
∂

∂τ̄l
JELBO(φ, λ̄i, τ̄l)

=
−1

2

∂

∂τ̄l

∑
i

∑
j

[
log

λ̄iτ̄l
σ2
i,j

+
σ2
i,j

λ̄iτ̄l
+
µ2
i,j

λ̄iτ̄l
− 1

]
+

∂

∂τ̄l
log Γ−1(τ̄l;α, β)

=
−1

2

∑
i

∑
j

1

τ̄l
−
σ2
i,j + µ2

i,j

λ̄iτ̄2l

+
β

τ̄2l
− α+ 1

τ̄l

=
D

τ̄l
−
∑
i λ̄

−1
i

∑
j σ

2
i,j + µ2

i,j

τ̄2l
− 2β

τ̄2l
+

2α+ 2

τ̄l

2β +
∑
i λ̄

−1
i

∑
j σ

2
i,j + µ2

i,j

τ̄2l
=
D + 2α+ 2

τ̄l

τ̄∗l =
2β +

∑
i λ̄

−1
i

∑
j σ

2
i,j + µ2

i,j

D + 2α+ 2
.

B.2 Half-Cauchy

Starting with the first line of Equation 8, we have

0 =
∂

∂λ̄i
JELBO(φ, λ̄i, τ̄l)

=
−1

2

∂

∂λ̄i

∑
i

∑
j

[
log

λ̄iτ̄l
σ2
i,j

+
σ2
i,j

λ̄iτ̄l
+
µ2
i,j

λ̄iτ̄l
− 1

]
+

∂

∂λ̄i
logC+(

√
λ̄i; 0, η)

=
∑
j

1

λ̄i
−
σ2
i,j + µ2

i,j

λ2i τ̄l
+

2

η2 + λ̄i

=
2λ̄i

η2 + λ̄i
−
τ̄−1
l

∑
j σ

2
i,j + µ2

i,j

λ̄i
+Di

9

where Di is the number of parameters in the ith row. This final expression is of the same form we
solved for ADD and therefore has the same solution with appropriately adjusted constants:

λ̄∗i =
Mi − η2Di +

√
M2
i + (2Di + 8)η2Mi + η4D2

i

2Di + 4
where Mi = τ̄−1

l

∑
j

σ2
i,j + µ2

i,j .

Moving on the ADD parameter, we consider the second line of Equation 8:

0 =
∂

∂τ̄l
JELBO(φ, λ̄i, τ̄l)

=
−1

2

∂

∂τ̄l

∑
i

∑
j

[
log

λ̄iτ̄l
σ2
i,j

+
σ2
i,j

λ̄iτ̄l
+
µ2
i,j

λ̄iτ̄l
− 1

]
+

∂

∂τ̄l
logC+(

√
τ̄l; 0, η)

=
∑
i

∑
j

1

τ̄l
−
σ2
i,j + µ2

i,j

λ̄iτ̄2l
+

2

η2 + τ̄l

=
D

τ̄l
−
∑
i λ̄

−1
i

∑
j σ

2
i,j + µ2

i,j

τ̄2l
+

2

η2 + τ̄l

=
2τ̄l

η2 + τ̄l
−
∑
i λ̄

−1
i

∑
j σ

2
i,j + µ2

i,j

τ̄l
+D.

Again solving the same equation yields the solution:

τ̄∗l =
Mλ − η2D +

√
M2
λ + (2D + 8)η2Mλ + η4D2

2D + 4
where Mλ =

∑
i

λ̄−1
i

∑
j

σ2
i,j + µ2

i,j .

B.3 Log-Uniform

As mentioned earlier, the solution for the log-uniform distribution can be attained in the limit of the
inverse Gamma. Plugging α = 0 and β = 0 into the inverse gamma’s solutions we obtain:

λ̄∗i =

∑
j σ

2
i,j + µ2

i,j

τ̄l(Di + 2)
and τ̄∗l =

∑
i λ̄

−1
i

∑
j σ

2
i,j + µ2

i,j

D + 2
.

10

	Introduction
	Automatic Depth Determination
	Inference via Generalized Variational EM
	Experiments
	ADD EM Updates
	Inverse Gamma
	Half-Cauchy
	Log-Uniform

	ARD-ADD EM Updates
	Inverse Gamma
	Half-Cauchy
	Log-Uniform

