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Abstract

Large-scale datasets may contain significant proportions of noisy (incorrect) class
labels, and it is well-known that modern deep neural networks poorly generalize
from such noisy training datasets. In this paper, we propose a novel inference
method, Deep Determinantal Generative Classifier (DDGC), which can obtain a
more robust decision boundary under any softmax neural classifier pre-trained on
noisy datasets. Our main idea is inducing a generative classifier on top of hidden
feature spaces of the discriminative deep model. By estimating the parameters of
generative classifier using the minimum covariance determinant estimator, we sig-
nificantly improve the classification accuracy, with neither re-training of the deep
model nor changing its architectures. In particular, we show that DDGC not only
generalizes well from noisy labels, but also is robust against adversarial perturba-
tions due to its large margin property. Finally, we propose the ensemble version of
DDGC to improve its performance, by investigating the layer-wise characteristics
of generative classifier. Our extensive experimental results demonstrate the su-
periority of DDGC given different learning models optimized by various training
techniques to handle noisy labels or adversarial samples. For instance, on CIFAR-
10 dataset containing 45% noisy training labels, we improve the test accuracy of a
deep model optimized by the state-of-the-art noise-handling training method from
33.34% to 43.02%.

1 Introduction

Deep neural networks (DNNs) are known to generalize well when they are trained on large-scale
datasets with clean label annotations. For example, DNNs have achieved state-of-the-art perfor-
mance on many classification tasks, e.g., speech recognition [1], object detection [7] and image
classification [13]. However, as the scale of the training dataset increases, it becomes infeasible to
obtain all class labels from domain experts. A common practice is collecting the class labels from
data mining on social media [27] and web data [19]. However, they may contain missing/noisy (in-
correct) labels, and recent studies have shown that modern deep architectures may generalize poorly
from the noisy datasets [40, 2]. For example, in Figure 1(a), the test set accuracy (black line) of
DenseNet-100 model [16] trained on the CIFAR-10 dataset [20] significantly decreases as the noise
fraction increases.

To overcome the poor generalization issue of DNNs against noisy labels, many training strategies
have been investigated in the literature. Reed et al. [35] proposed a bootstrapping method which
trains deep models with new labels generated by a convex combination of the raw (noisy) labels and
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by varying noise fraction
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Figure 1: Experimental results under DenseNet-100 model and CIFAR-10 dataset. (a) Test accuracy
comparison when the labels of a given proportion of training samples are flipped to other labels
uniformly at random. Visualization of features on the penultimate layer using t-SNE from (b) test
samples (same colors indicate same classes) and (c) training samples when the noise fraction is 20%.

their predictions, and Ma et al. [25] improved the bootstrapping method by utilizing the dimension-
ality of subspaces during training. Patrini et al. [34] modified the loss and posterior distribution to
eliminate the influence of noisy labels, and Hendrycks et al. [14] improved such a loss correction
method by utilizing the information from data with true class labels. Goldberger & Ben-Reuven [8]
added an additional softmax layer to model a noise transition matrix. Finally, training DNNs on
selected samples also has been studied [18, 36, 28, 12]. However, adopting such training methods
might incur expensive back-and-forth costs, e.g., additional time and hyperparameter tuning. This
motivates our approach of developing a more plausible inference method which can be applied to
any pre-trained deep model. Nevertheless, our direction is complementary to the prior works, where
one can also combine them for even better performance (see Table 3 and 4 in Section 3).

Contributions. It has been observed that DNNs can learn meaningful feature patterns shared by
multiple training examples even for datasets with noisy labels [2]. We also found that an induced
generative classifier [32] under linear discriminant analysis (LDA) assumption (with naive estima-
tions on sample mean and covariance) built upon the hidden feature space can outperform the soft-
max classifier (orange line in Figure 1(a)). In Figure 1(b), the hidden features from test samples
projected in a 2-dimensional space using t-SNE [26] are illustrated. Here, one can observe that all
ten classes are well-separated in the embedding space, even though the model is trained under a
noisy dataset. More importantly, Figure 1(c) plotting noisy training samples implies that outliers
induce the class-wise multi-modal distributions in the feature space. Therefore, an LDA-like gener-
ative classifier assuming the class-wise unimodal distribution might be more robust, as a discrimi-
native classifier is easier to be overfitted by outliers. This motivates our goal to induce a generative
classifier on the pre-trained hidden features of DNNs.

To this end, we propose the so-called deep determinantal generative classifier (DDGC), based on
the minimum covariance determinant (MCD) [37, 38] estimation on its parameters. While a naive
sample estimator can be highly influenced by outliers, MCD estimator can improve the robustness
by removing them. Note that MCD is known to have a near-optimal breakdown point [11] of almost
50% in most situations, i.e., the number of outliers should be larger than that of normal samples
to fool it. We further provide a new theoretical support on the larger margin property of DDGC
such that not only does it generalize well from noisy labels [5], but also improves the robustness
against adversarial perturbations [33]. In addition, we observe that DNNs tend to have similar
hidden features, regardless of whether they are trained with clean or noisy labels at early layers [30],
and DDGC built from low-level features can be often more effective. Under the observation, we
finally propose an ensemble version of DDGC to incorporate all effects of low and high layers.

We demonstrate the effectiveness of DDGC using modern neural architectures, such as DenseNet
[16] and ResNet [13] trained for image classification tasks including CIFAR [20] and SVHN [31].
First, our methods (green and blue lines in Figure 1(a)) significantly outperform the softmax classi-
fier, although they use the same feature representations trained by the noisy dataset. For example, we
improve the test accuracy of DenseNet on CIFAR-10 datasets with 60% noisy labels from 53.34%
to 74.72%. We also demonstrate that DDGC can be used to further improve various prior training
methods [35, 34, 25, 12, 18, 28] which are specialized to handle the noisy environment. Finally,
DDGC is shown to be robust against various adversarial attacks [9, 29, 4].
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2 Robust inference via generative classifier

2.1 Generative classifier and MCD estimator

Let x be an input and y ∈ {1, · · · , C} be its class label. Without loss of generality, suppose that a

pre-trained softmax neural classifier is given: P (y = c|x) =
exp(w>c f(x)+bc)∑
c′ exp(w>

c′f(x)+bc′)
,where wc and bc

are the weight and the bias of the softmax classifier for class c, and f(·) ∈ Rd denotes the output of
the penultimate layer of DNNs. Then, without any modification on the pre-trained softmax neural
classifier, we induce a generative classifier by assuming the class-conditional distribution follows
the multivariate Gaussian distribution. In particular, we define C Gaussian distributions with a tied
covariance Σ, i.e., linear discriminant analysis (LDA) [6], and a Bernoulli distribution for the class
prior: P (f(x)|y = c) = N (f(x)|µc,Σ) , P (y = c) = βc, where µc is the mean of multivariate
Gaussian distribution and βc is the normalized prior for class c. We provide an analytic justification
on the LDA (i.e., tied covariance) assumption in Appendix A. Then, based on the Bayesian rule, we
induce a new posterior different from the softmax one as follows:

P (y = c|f(x)) =
P (y = c)P (f(x)|y = c)∑

c′
P (y = c′)P (f(x)|y = c′)

=
exp

(
µ>c Σ−1f(x)− 1

2µ
>
c Σ−1µc + log βc

)∑
c′

exp
(
µ>c′Σ

−1f(x)− 1
2µ
>
c′Σ
−1µc′ + log βc′

) .
To estimate the parameters of the generative classifier, one can compute the sample class mean and
covariance of training samples XN = {(x1, y1), . . . , (xN , yN )}:

µ̄c =
∑
i:yi=c

f(xi)

Nc
, Σ̄ =

∑
c

∑
i:yi=c

(f(xi)− µ̄c) (f(xi)− µ̄c)>

N
, β̄c =

Nc
N
, (1)

where Nc is the number of training samples labeled to be class c. We remark that inducing a
generative classifier (e.g., a mixture of Gaussian) on pre-trained deep models was studied for various
purposes, e.g., speech recognition [15] and novelty detection [22]. However, the setting of noisy
training labels was not investigated under existing approaches on this line. To handle this, we design
a more advanced generative classifier as stated in below.

One can expect that the naive sample estimator (1) can be highly influenced by outliers (i.e., training
samples with noisy labels). In order to improve the robustness, we propose the so-called deep
determinantal generative classifier (DDGC), which utilizes the minimum covariance determinant
(MCD) estimator [38] to estimate its parameters. For each class c, the main idea of MCD is finding
a subset XKc

for which the determinant of the corresponding sample covariance is minimized:

min
XKc⊂XNc

det
(
Σ̂c

)
subject to |XKc | = Kc, (2)

where XNc
is the set of training samples labeled to be class c, Σ̂c is the sample covariance of XKc

and 0 < Kc < Nc is a hyperparameter. Then, only using the samples in
⋃
c XKc

, it estimates the
parameters, i.e., µ̂c, Σ̂, β̂c, of the generative classifier, by following (1). Such a new estimator can be
more robust by removing the outliers which might be widely scattered in datasets. The robustness
of MCD estimator has been justified in the literature: it is known to have near-optimal breakdown
points [11], i.e., the smallest fraction of data points that need to be replaced by arbitrary values (i.e.,
outliers) to fool the estimator completely. Formally, denote YM as a set obtained by replacing M
data points of set Y by some arbitrary values. Then, for a multivariate mean estimator µ = µ(Y)
from Y , the breakdown point is defined as follows (see Appendix A for more detailed explanations
including the breakdown point of covariance estimator):

ε∗(µ,Y) =
1

|Y|
min

{
M ∈ {1, · · · , |Y|} : sup

YM

‖µ(Y)− µ(YM )‖ =∞
}
.

While the breakdown point of the naive sample estimator is 0%, the MCD estimator for
the generative classifier under LDA assumption is known to attain its breakdown value of
minc

b(Nc−d+1)/2c
Nc

≈ 50% [23]. Inspired by this fact, we choose the default value of Kc in (2)
by b(Nc + d+ 1)/2c.
We also establish the following theoretical support that the MCD-based generative classifier, i.e.,
DDGC, can have smaller errors on parameter estimations and produce a larger margin, compared to
the naive sample estimator, under some assumptions for its analytic tractability.
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Theorem 1. Assume the followings:

(A1) The distribution of hidden features is P (f(x)|y = c) = N
(
f(x)|µc, σ2I

)
(i.e., the con-

ditional Gaussian distribution) and that of outliers is an arbitrary distribution with mean
µout and covariance matrix σ2

outI, where I ∈ Rd×d is the identity matrix.

(A2) µout = 0, and 1
C

∑
c µcµ

T
c is a diagonal matrix.

(A3) All classes have the same number of samples (i.e., Nc = N
C ), the same fraction δout < 1 of

outliers, and the sample fraction δmcd = Kc

Nc
< 1 of samples selected by MCD estimator.

(A4) The outliers are widely scattered such that σ2 < σ2
out.

(A5) The number of outliers is not too large such that δout < 1− δmcd and δmcd > d
Nc

.

Let µ̂, Σ̂ and µ̄, Σ̄ be the outputs of the MCD and sample estimators, respectively. Then, µ̂, µ̄, Σ̂, Σ̄
converge almost surely to their expectation as N →∞, and it holds that

B(µ̂c, µ̂c′ ,Σ, Σ̂)

B(µ̄c, µ̄c′ ,Σ, Σ̄)

a.s.→ lim
N→∞

B(µ̂c, µ̂c′ ,Σ, Σ̂)

B(µ̄c, µ̄c′ ,Σ, Σ̄)
≤ 1, (3)

‖µc − µ̂c‖1
a.s.→ lim

N→∞
‖µc − µ̂c‖1 = 0, ‖µc − µ̄c‖1

a.s.→ lim
N→∞

‖µc − µ̄c‖1 = δout‖µc‖1 (4)

(µ̂c − µ̂c′)T Σ̂−1(µ̂c − µ̂c′)
(µ̄c − µ̄c′)T Σ̄−1(µ̄c − µ̄c′)

a.s.→ lim
N→∞

(µ̂c − µ̂c′)T Σ̂−1(µ̂c − µ̂c′)
(µ̄c − µ̄c′)T Σ̄−1(µ̄c − µ̄c′)

=
1

(1− δout)2 ≥ 1. (5)

for all c, c′, where B(µ̂c, µ̂c′ ,Σ, Σ̂) := exp

(
− 1

8

[(µ̂c−µ̂c′ )
T Σ̂−1(µ̂c−µ̂c′ )]

2

(µ̂c−µ̂c′ )
T Σ̂−1ΣΣ̂−1(µ̂c−µ̂c′ )

)
.

The proof of the above theorem is given in Appendix F, where it is built upon the fact that the
determinants can be expressed as the d-th degree polynomial of outlier ratio. We note that one might
enforce the assumptions of the diagonal covariance matrices in A1 and the zero-mean/uncorrelated
properties of class mean in A2 to hold under an affine translation of hidden features. In addition,
the assumption in A5 holds when Nc is large enough. Nevertheless, we think most assumptions of
Theorem 1 are not necessary to claim the superiority of DDGC (they are rather from a limitation of
our proof techniques) and it is an interesting future direction to explore to relax them.

2.2 Approximation algorithm for MCD

Even though the MCD estimator has several advantages, the optimization (2) is computationally
intractable (i.e., NP-hard) to solve [3]. To handle this issue, we aim for computing its approximate
solution, following a similar idea to that by [17]. We design two step scheme as follows: (a) obtain
the mean and covariance, i.e., µ̂c, Σ̂c, using Algorithm 1 for each class c, and (b) compute the tied

covariance by Σ̂ =
∑

cKcΣ̂c∑
cKc

. In other words, we apply the MCD estimator for each class, and
combine the individual covariances into a single one due to the tied covariance assumption of LDA.
Even though finding the optimal solution of MCD estimator under a single Gaussian distribution is
still intractable, Algorithm 1 can produce a local optimal solution since it monotonically decreases
the determinant under any random initial subset [38]. We choose Imax = 2 in our experiments as
the additional iterations would not improve the results significantly.
First, (5) implies that the MCD estimator induces a larger margin and improves the robustness to ad-
versarial attacks, since Pang et al. [33] showed that the margin of a generative classifier corresponds
to the Mahalanobis distance between class-conditional distributions and the optimal robustness to
adversarial samples is achieved by the maximum margin. More importantly, (3) and (4) together im-
ply that a MCD-based classifier can generalize better since the generalization error of a generative
classifier is known to be bounded as follows [5]:

Px

(
y∗ 6= arg max

y
Pµ̂c,Σ̂

(y|x)

)
≤
∑
c

∑
c′ 6=c

B(µ̂c′ , µ̂c,Σ, Σ̂) +D
∑
c

‖µc − µ̂c‖1,

for some constant D > 0.
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Algorithm 1 Rousseeuw & Driessen [38] Approximating MCD for a single Gaussian.
Input: XNc

= {xi : i = 1, · · · , Nc} and the maximum number of iterations Imax.

Uniformly sample initial subset XKc ⊂ XNc , where |XKc | = b(Nc + d+ 1)/2c.
Compute µ̂c = 1

|XKc |
∑

x∈XKc

f(x), Σ̂c = 1
|XKc |

∑
x∈XKc

(f(x)− µ̂c) (f(x)− µ̂c)> .

for i = 1 to Imax do
Compute the Mahalanobis distance: α(x) = (f(x)− µ̂c)

>
Σ̂−1
c (f(x)− µ̂c) , ∀x ∈ XNc .

Update XKc such that it includes b(Nc + d+ 1)/2c samples with smallest distance α(x).
Compute sample means and covariance, i.e., µ̂c, Σ̂c, using new subset XKc

.
Exit the loop if the determinant of covariance matrix is not decreasing anymore.

end for
Return µ̂c and Σ̂c
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Figure 2: Experimental results under ResNet-34 model and CIFAR-10 dataset. (a) Test accuracy of
generative classifiers computed at different basic blocks. (b) Test accuracy on various adversarial
attacks when the model is trained on clean dataset. (c) Test accuracy of generative classifiers from
penultimate features under various assumptions: identity covariance and tied covariance (LDA).

2.3 Ensemble of generative classifiers

To further improve the performance of our method, we consider the ensemble of generative classi-
fiers not only from the penultimate features but also from other low-level features in DNNs. For-
mally, given training data, we extract `-th hidden features of DNNs, denoted by f`(x) ∈ Rd` , and
compute the corresponding parameters of a generative classifier (i.e., µ̂`,c and Σ̂`) using the (ap-
proximated version of) MCD estimator. Then, the final posterior distribution is obtained by the sum
of all posterior distributions of generative classifiers:

∑
`

α`P (y = c|f`(x)) =
∑
`

α`
exp

(
µ̂>`,cΣ̂

−1
` f`(x)− 0.5µ̂>`,cΣ̂

−1
` µ̂`,c + log β̂c

)
∑
c′ exp

(
µ̂>`,c′Σ̂

−1
` f`(x)− 0.5µ̂>`,c′Σ̂

−1
` µ̂`,c′ + log β̂c′

) ,
where α` is an ensemble weight at `-th layer. In our experiments, we choose the weight of each
layer by optimizing negative log-likelihood (NLL) loss over the validation set. One can expect that
this natural scheme can bring an extra gain in improving the performance due to ensemble effects.

To confirm that the proposed ensemble approach is indeed effective, we measure the classification
accuracy of the generative classifier from different basic blocks of ResNet-34 [13] trained on CIFAR-
10 dataset [20] with various noise fractions, where the corresponding results on DenseNet models
[16] can be found in Appendix C. For computational efficiency, the dimensions of the intermediate
features are reduced using average pooling (see Section 3 for more details). First, we found that the
performances of the generative classifiers from low-level features are more stable, while the accuracy
of generative classifier from penultimate layer significantly decreases as the noisy fraction increases
as shown in Figure 2(a). We expect that this is because the dimension (i.e., number of channels)
of low-level features is usually smaller than that of high-level features. Since the breakdown point
of MCD is inversely proportional to the feature dimension, the generative classifiers from low-level
features can be more robust. This also coincides with the prior observation in the literature [30]
that DNNs tend to have similar hidden features at early layers, regardless of whether they train
clean or noisy labels. More importantly, we found that generative classifiers from low-level features
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Model Inference method Ensemble Noise = 0% 20% 40% 60%

DenseNet

Softmax - 94.42 80.24 68.61 53.34

Generative + sample - 94.31 85.08 74.72 59.49
X 93.73 87.23 80.01 69.17

Generative + MCD (DDGC) - 94.37 85.96 78.34 66.16
X 93.49 87.25 81.04 74.72

ResNet

Softmax - 95.01 79.28 61.85 35.02

Generative + sample - 94.98 81.61 64.60 40.63
X 94.98 87.23 78.40 61.94

Generative + MCD (DDGC) - 94.73 83.04 68.04 42.74
X 94.32 87.25 80.01 71.06

Table 1: Effects of an ensemble method. We use the CIFAR-10 dataset with various uniform noise
fractions. All values are percentages and the best results are highlighted in bold if the gain is bigger
than 1%.

Noise type (%)
ResNet DenseNet

CIFAR-10 CIFAR-100 SVHN CIFAR-10 CIFAR-100 SVHN
Softmax / DDGC Softmax / DDGC

Clean 95.01 / 94.32 77.51 / 76.55 95.96 / 96.09 94.42 / 93.49 76.41 / 73.65 96.59 / 96.18
Uniform (20%) 79.28 / 87.25 60.92 / 66.08 83.52 / 91.67 80.24 / 87.25 57.63 / 62.19 86.92 / 89.50
Uniform (40%) 61.85 / 80.01 44.08 / 59.72 72.89 / 87.16 68.61 / 81.04 45.08 / 53.98 81.91 / 85.71
Uniform (60%) 35.02 / 71.06 23.43 / 48.85 61.23 / 80.52 53.34 / 74.72 35.83 / 45.27 71.18 / 77.67

Flip (20%) 79.83 / 87.60 64.64 / 71.42 85.49 / 93.00 78.52 / 88.88 65.41 / 68.24 95.04 / 94.86
Flip (40%) 58.21 / 77.23 46.32 / 63.87 65.88 / 87.96 60.15 / 85.91 47.91 / 64.73 88.83 / 93.57

Table 2: Test accuracy (%) of different models trained on various datasets. We use the ensemble
version of DDGC, and the best results are highlighted in bold if the gain is bigger than 1%.

are more robust to strong adversarial attacks like CW [4], as shown in Figure 2(b). Therefore, we
utilize the low-level generative classifiers as well to improve the generalization from noisy labels
and robustness to adversarial attacks simultaneously.

3 Experimental results

In this section, we demonstrate the effectiveness of the proposed method using deep convolutional
neural networks including DenseNet [16] and ResNet [13] on various vision datasets: CIFAR [20]
and SVHN [31]. Due to the space limit, we provide the more detailed experimental setups and
results in Appendix B.

3.1 Generalization from noisy labels

Setup. First, we evaluate the effectiveness of DDGC using deep models trained on datasets with
noisy labels. We train DenseNet-100 and ResNet-34 for classifying CIFAR-10, CIFAR-100 and
SVHN datasets. Similar to [25, 12], we consider two types of noisy labels: corrupting a label to
other class uniformly at random (uniform) and corrupting a label only to a specific class (flip). For
ensembles of generative classifiers, we induce the generative classifiers from every end of basic
block of DenseNet (or ResNet), where ensemble weights of each layer are tuned on a separate
validation set, which consists of 500 images (i.e., only ≤ 1% of the number of training samples)
with clean labels.2 Similar to [22], the size of feature maps on each convolutional layers is reduced
by average pooling for computational efficiency: F ×H×W → F × 1, where F is the number of
channels andH×W is the spatial dimension.

Verification of contributions from each technique. We first evaluate the performance of gen-
erative classifiers with various assumptions: identity covariance (Euclidean) and tied covariance
(LDA). In the case of identity covariance, we also apply a robust estimator called the least trimmed

2For fair comparisons, one might also suggest fine-tuning the softmax classifier (with fixed features) using
the validation data to improve the performance. However, the 1% data is often not enough for the purpose as
the number of parameters of softmax classifier is too large. We indeed report the performance of the fine-tuned
softmax classifier on Table 9 in Appendix D.
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Dataset Training
method

Clean Uniform (20%) Uniform (40%) Uniform (60%)
Softmax / DDGC

CIFAR-10

Cross-entropy 94.34 / 94.29 81.95 / 86.80 63.84 / 78.75 62.45 / 69.06
Bootstrap (hard) 94.56 / 94.49 82.90 / 87.26 75.97 / 81.81 72.91 / 75.61
Bootstrap (soft) 94.46 / 94.31 80.29 / 85.20 65.22 / 77.86 58.55 / 69.71

Forward 94.53 / 94.39 85.80 / 87.66 77.95 / 81.24 72.56 / 74.92
Backward 94.39 / 94.45 77.44 / 81.38 62.83 / 72.76 56.64 / 65.95

D2L 94.55 / 94.38 88.89 / 89.00 86.68 / 87.03 76.83 / 78.08

CIFAR-100

Cross-entropy 76.31 / 75.87 61.11 / 66.33 45.08 / 58.68 34.97 / 44.96
Bootstrap (hard) 75.65 / 75.49 61.61 / 65.14 51.27 / 57.61 39.04 / 47.24
Bootstrap (soft) 76.40 / 75.88 60.28 / 65.54 47.66 / 57.97 34.68 / 44.84

Forward 75.84 / 75.43 63.73 / 67.46 53.03 / 60.52 41.28 / 47.88
Backward 76.75 / 76.28 56.24 / 62.13 37.70 / 51.82 23.55 / 39.16

D2L 76.13 / 75.57 71.90 / 72.07 63.61 / 64.67 9.51 / 39.42

SVHN

Cross-entropy 96.38 / 96.15 83.45 / 91.46 60.86 / 83.40 38.29 / 68.71
Bootstrap (hard) 96.40 / 96.26 83.43 / 92.24 74.25 / 88.04 66.51 / 82.03
Bootstrap (soft) 96.51 / 96.09 86.43 / 91.25 58.22 / 83.90 44.52 / 73.11

Forward 96.36 / 96.24 88.21 / 92.47 80.35 / 88.55 82.16 / 87.56
Backward 96.43 / 96.31 87.00 / 87.31 72.02 / 78.65 50.54 / 71.06

D2L 96.49 / 96.37 92.31 / 93.58 94.46 / 94.68 92.87 / 93.25

Table 3: Test accuracy (%) of ResNet trained on various training methods which utilize a single
classifier. We use the ensemble version of DDGC, and the best results are highlighted in bold if the
gain is bigger than 1%.

Dataset Noise type (%) Cross-entropy Decoupling MentorNet Co-teaching Co-teaching
+ DDGC

CIFAR-10
Flip (45%) 49.50 48.80 58.14 71.17 70.50

Uniform (50%) 48.87 51.49 71.10 74.12 76.26
Uniform (20%) 76.25 80.44 80.76 82.13 84.49

CIFAR-100
Flip (45%) 31.99 26.05 31.60 33.34 43.02

Uniform (50%) 25.21 25.80 39.00 41.49 44.81
Uniform (20%) 47.55 44.52 52.13 54.27 57.74

Table 4: Test accuracy (%) of 9-layer CNN trained on various training methods which utilize an
ensemble of classifiers or meta-learning model. We use the ensemble version of DDGC and best
results are highlighted in bold if the gain is bigger than 1%.

square (LTS) estimator [37] which finds a K-subset with smallest error and computes the sample
mean from it, i.e., minµ̂

∑K
i=1(‖xi − µ̂‖22). As shown in Figure 2(c), the generative classifiers with

LDA assumption (blue and purple bars) generalize better than the generative classifiers with iden-
tity covariance (orange and green bars) well from noisy labels. Table 1 validates the contributions
of the proposed techniques by incrementally applying our techniques to see the improvement from
adding each component one by one. One can note that the generative classifier on features extracted
from the penultimate layer outperforms the softmax classifier without the MCD estimator or ensem-
ble method, while it still provides a comparable classification accuracy when the model is trained
on clean dataset (i.e., noise = 0%). On top of that, by utilizing the MCD estimator, the classifica-
tion accuracy is further improved compared to that employs only the naive sample estimator. This
implies that the proposed method can improve the performance without any information of clean
labels. In addition, the ensemble method significantly improves the classification accuracy. Finally,
Table 2 reports the classification accuracy for all networks and datasets, where the proposed method
significantly outperforms the softmax classifier for all tested cases.

Compatibility and comparison with the state-of-art training methods. We compare the perfor-
mance of the standard softmax classifier and DDGC when they are combined with other various
training methods for noisy environments, where more detailed explanations on them are given in
Appendix B. We follow two experimental setups of Ma et al. [25]3 and Han et al. [12]4. The first
setup considers the following methods training a single network: Hard/soft bootstrapping [35], for-
ward/backward [34], and D2L [25]. It uses ResNet-44 and only considers the uniform noise. The
second setup considers the following methods training multiple networks, i.e., an ensemble of clas-

3We used the codes: https://github.com/xingjunm/dimensionality-driven-learning.
4We used a reference implementation: https://github.com/bhanML/Co-teaching
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Dataset Target Adversarial
attacks

Clean Uniform (20%) Uniform (40%) Uniform (60%)
Softmax / DDGC

CIFAR-10

Softmax
FGSM 73.67 / 73.19 63.19 / 73.24 47.80 / 68.68 30.34 / 58.42

DeepFool 77.88 / 77.74 75.27 / 84.39 56.99 / 78.35 36.47 / 70.91
CW 36.36 / 36.86 65.45 / 76.26 50.68 / 73.59 33.08 / 67.81

DDGC
FGSM 94.62 / 94.38 75.11 / 82.78 48.06 / 68.86 28.84 / 57.40

DeepFool 70.23 / 70.07 73.93 / 83.35 56.23 / 77.66 36.46 / 70.75
CW 13.00 / 12.50 28.40 / 28.40 17.20 / 19.40 12.70 / 10.70

CIFAR-100

Softmax
FGSM 50.20 / 46.97 36.16 / 41.95 26.34 / 39.82 19.19 / 40.68

DeepFool 46.63 / 42.44 47.13 / 53.71 36.18 / 51.98 23.10 / 45.65
CW 35.66 / 33.50 38.57 / 45.63 32.21 / 47.61 22.52 / 44.74

DDGC
FGSM 73.07 / 70.63 45.36 / 49.39 28.97 / 41.31 19.63 / 39.55

DeepFool 44.86 / 39.40 42.59 / 49.63 32.59 / 48.27 21.90 / 44.72
CW 26.81 / 24.13 15.54 / 17.04 10.59 / 17.95 8.81 / 22.90

SVHN

Softmax
FGSM 61.94 / 62.21 56.26 / 60.25 39.93 / 52.20 31.93 / 42.76

DeepFool 78.01 / 78.54 83.55 / 89.51 69.46 / 85.05 61.15 / 79.35
CW 57.27 / 58.11 76.21 / 83.85 60.64 / 79.56 51.73 / 73.83

DDGC
FGSM 96.13 / 96.12 51.40 / 54.54 35.82 / 47.31 29.29 / 40.21

DeepFool 69.90 / 70.00 81.40 / 88.63 67.90 / 83.68 59.36 / 77.81
CW 36.10 / 36.80 46.30 / 51.20 34.30 / 36.70 30.00 / 33.80

Table 5: Test accuracy (%) of ResNet on black-box adversarial attacks. We use the ensemble version
of DDGC, and the best results are highlighted in bold if the gain is bigger than 1%.

sifiers or a meta-learning model: Decoupling [28], MentorNet [18] and Co-teaching [12]. It uses
a 9-layer CNN architecture, and considers the CIFAR-10 and CIFAR-100 datasets with uniform
and flip noise types. Table 3 and 4 report the classification accuracy of softmax classifier and the
ensemble version of DDGC, for the first and secon setups, respectively. They show that DDGC
consistently outperforms the softmax inference under various training methods and noise types.5

3.2 Robustness against adversarial attacks

Setup. We also evaluate if the proposed method can improve the robustness on adversarial attacks
[39]. It is well-known that the adversarial (visually imperceptible) perturbation to clean inputs can
induce the DNNs to make incorrect predictions at test time. This undesirable property of DNNs
has raised major security concerns. To verify that DDGC can improve the robustness to adversarial
attacks, we train DenseNet-100 and ResNet-34 for classifying CIFAR-10, CIFAR-100 and SVHN
datasets, and generate the adversarial samples using FGSM [9], DeepFool [29] and CW [4] attacks,
where the detailed explanations can be found in Appendix B. We consider the two types of adversar-
ial attacks: generating the adversarial samples using a network, and then measuring their accuracy
using the same (white-box) or another network (black-box). For all experiments, the adversarial
samples are generated by targeting a softmax classifier or our generative classifier (see Appendix B
for more details).

Robustness against adversarial attacks. Table 5 reports the classification accuracy of ResNet-34
on black-box adversarial attacks, and more results on white-box adversarial attacks and DenseNet-
100 can be found in Appendix E. It shows that DDGC significantly improves the robustness against
adversarial attacks when the training datasets contain noisy labels. We found that this is because the
generative classifiers from low-level features are not utilized well, i.e., the trained weights (using
validation) would be nearly zero for lower layers, when a training dataset only contains clean labels.
Namely, the generative classifiers from low-level features are very robust (see Figure 2(b)), since
the adversarial samples are generated in a way that mainly fools the upper layers of DNNs, i.e., thus
both clean and adversarial samples produce similar hidden features at lower layers. We also apply
DDGC to the “robust” learning models optimized by adversarial training methods [9]: generating
FGSM samples and optimize the cross-entropy loss by treating them as additional training examples.
Table 6 shows that DDGC further improves the robustness of deep models optimized by adversarial
training.

5In the second setup, we only apply DDGC to a model pre-trained by Co-teaching because it outperforms
other training methods.
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Dataset Target Adversarial
attacks

Clean Uniform (20%) Uniform (40%) Uniform (60%)
Softmax / DDGC

CIFAR-10

Softmax
FGSM 91.63 / 91.59 79.01 / 84.54 62.47 / 78.45 37.71 / 66.96

DeepFool 93.72 / 93.34 80.95 / 85.83 63.79 / 79.29 38.23 / 68.04
CW 90.00 / 89.71 79.38 / 84.70 62.92 / 78.49 37.78 / 67.51

DDGC
FGSM 94.81 / 94.55 80.82 / 86.08 62.22 / 78.62 37.22 / 66.81

DeepFool 93.06 / 92.65 80.66 / 85.64 63.72 / 79.23 38.32 / 68.01
CW 86.10 / 85.50 71.80 / 79.00 53.40 / 65.30 30.70 / 50.30

CIFAR-100

Softmax
FGSM 63.67 / 62.74 51.39 / 58.88 35.78 / 52.85 22.13 / 44.86

DeepFool 60.92 / 59.29 53.34 / 60.94 37.10 / 54.90 23.47 / 46.35
CW 59.74 / 58.88 51.67 / 59.14 36.27 / 54.00 23.24 / 46.21

DDGC
FGSM 70.17 / 69.08 54.25 / 61.23 36.81 / 52.98 21.97 / 44.22

DeepFool 59.81 / 57.90 52.72 / 61.27 36.90 / 54.86 23.81 / 46.45
CW 57.00 / 55.50 39.27 / 47.31 25.22 / 41.72 15.27 / 35.50

SVHN

Softmax
FGSM 68.00 / 68.34 68.08 / 72.33 51.56 / 62.60 39.01 / 54.11

DeepFool 85.68 / 85.77 87.98 / 91.63 74.69 / 86.48 65.64 / 81.32
CW 77.48 / 77.70 85.66 / 90.02 71.77 / 84.95 62.67 / 79.95

DDGC
FGSM 96.36 / 96.27 64.40 / 67.44 47.48 / 58.00 35.90 / 51.89

DeepFool 79.54 / 79.36 85.59 / 89.90 71.95 / 84.81 63.36 / 79.86
CW 62.90 / 62.40 70.40 / 74.10 56.30 / 67.60 44.20 / 58.40

Table 6: Test accuracy (%) of ResNet optimized by adversarial training. We use the ensemble
version of DDGC, and best results are highlighted in bold if the gain is bigger than 1%.

4 Conclusion

We propose a new inference method, easily applicable to any softmax neural classifier pre-trained on
datasets with noisy labels. Our main idea is defining the generative classifier on top of fixed features
from the pre-trained model. Such “deep generative classifiers” have been largely dismissed for fully-
supervised classification settings as they are often substantially outperformed by discriminative deep
classifiers (e.g., softmax classifiers). In contrast to this common belief, we show that it is possible
to formulate a simple generative classifier that is more robust without sacrificing the discriminative
performance. We expect that our work would bring a refreshing angle for other related tasks, e.g.,
adaptive attacks, memorization [40] and interpretability [30].

Acknowledgements

This research was supported by the Engineering Research Center Program through the Na-
tional Research Foundation of Korea (NRF) funded by the Korean Government MSIT (NRF-
2018R1A5A1059921), DARPA Explainable AI (XAI) program #313498, Sloan Research Fel-
lowship, and Kwanjeong Educational Foundation Scholarship. We also thank Dawn Song, Dan
Hendrycks, Sungsoo Ahn and Insu Han for helpful discussions.

References
[1] Amodei, Dario, Ananthanarayanan, Sundaram, Anubhai, Rishita, Bai, Jingliang, Battenberg,

Eric, Case, Carl, Casper, Jared, Catanzaro, Bryan, Cheng, Qiang, Chen, Guoliang, et al. Deep
speech 2: End-to-end speech recognition in english and mandarin. In ICML, 2016.

[2] Arpit, Devansh, Jastrzebski, Stanislaw, Ballas, Nicolas, Krueger, David, Bengio, Emmanuel,
Kanwal, Maxinder S, Maharaj, Tegan, Fischer, Asja, Courville, Aaron, Bengio, Yoshua, et al.
A closer look at memorization in deep networks. In ICML, 2017.

[3] Bernholt, Thorsten. Robust estimators are hard to compute. Technical report, Technical Re-
port/Universität Dortmund, SFB 475 Komplexitätsreduktion in Multivariaten Datenstrukturen,
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A Preliminaries

Gaussian discriminant analysis. In this section, we describe the basic concepts of the discrimina-
tive and generative classifier [32]. Formally, denote the random variable of the input and label as x
and y = {1, · · · , C}, respectively. For the classification task, the discriminative classifier directly
defines a posterior distribution P (y|x), i.e., learning a direct mapping between input x and label
y. A popular model for discriminative classifier is softmax classifier which defines the posterior

distribution as follows: P (y = c|x) =
exp(w>c x+bc)∑
c′ exp(w>

c′x+bc′)
, where wc and bc are weights and bias for

a class c, respectively. In contrast to the discriminative classifier, the generative classifier defines the
class conditional distribution P (x|y) and class prior P (y) in order to indirectly define the posterior
distribution by specifying the joint distribution P (x, y) = P (y)P (x|y). Gaussian discriminant
analysis (GDA) is a popular method to define the generative classifier by assuming that the class
conditional distribution follows the multivariate Gaussian distribution and the class prior follows
Bernoulli distribution: P (x|y = c) = N (x|µc,Σc) , P (y = c) = βc∑

c′ βc′
, where µc and Σc are

the mean and covariance of multivariate Gaussian distribution, and βc is the unnormalized prior for
class c. This classifier has been studied in various machine learning areas (e.g., semi-supervised
learning [21] and incremental learning [22]).

In this paper, we focus on the special case of GDA, also known as the linear discriminant analysis
(LDA). In addition to Gaussian assumption, LDA further assumes that all classes share the same
covariance matrix, i.e., Σc = Σ. Since the quadratic term is canceled out with this assumption, the
posterior distribution of generative classifier can be represented as follows:

P (y = c|x) =
P (y = c)P (x|y = c)∑
c′ P (y = c′)P (x|y = c′)

=
exp

(
µ>c Σ−1x− 1

2µ
>
c Σ−1µc + log βc

)∑
c′ exp

(
µ>c′Σ

−1x− 1
2µ
>
c′Σ
−1µc′ + log βc′

) .
One can note that the above form of posterior distribution is equivalent to the softmax classifier by
considering µ>c Σ−1 and − 1

2µ
>
c Σ−1µc + log βc as its weight and bias, respectively. This implies

that x might be fitted in Gaussian distribution during training a softmax classifier.

Breakdown points. The robustness of MCD estimator can be explained by the fact that it has high
breakdown points [11]. Specifically, the breakdown point of an estimator measures the smallest
fraction of observations that need to be replaced by arbitrary values to carry the estimate beyond
all bounds. Formally, denote YM as a set obtained by replacing M data points of set Y by some
arbitrary values. Then, for a multivariate mean estimator µ = µ(Y) from Y , the breakdown point is
defined as follows (see Appendix A for more detailed explanations including the breakdown point
of covariance estimator):

ε∗(µ,Y) =
1

|Y|
min

{
M ∈ {1, · · · , |Y|} : sup

YM

‖µ(Y)− µ(YM )‖ =∞
}
.

For a multivariate estimator of covariance Σ, we have

ε∗(Σ,Y) =
1

|Y|
min{M ∈ {1, · · · , |Y|} : sup

M
max
i
{| log λi(Σ(Y))− log λi(Σ(YM ))|}},

where the k−th largest eigenvalue of a general n × n matrix is denoted by λk(Σ), k = 1, · · · , n
such that λ1(Σ) ≤ λ2(Σ) ≤ · · · ≤ λn(Σ). This implies that we consider a covariance estimator to
be broken whenever any of the eigenvalues can become arbitrary large or arbitrary close to 0.

B Experimental setup

In this section, we describe detailed explanation about all the experiments described in Section 3.

Detailed model architecture and datasets. We consider two state-of-the-art neural network ar-
chitectures: DenseNet [16] and ResNet [13]. For DenseNet, our model follows the same setup as
in Huang & Liu [16]: 100 layers, growth rate k = 12 and dropout rate 0. Also, we use ResNet
with 34 and 44 layers, filters = 64 and dropout rate 0.6 The softmax classifier is used, and each

6ResNet architecture is available at https://github.com/kuangliu/pytorch-cifar.
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model is trained by minimizing the cross-entropy loss. We train DenseNet and ResNet for classi-
fying CIFAR-10 (or 100) and SVHN datasets: the former consists of 50,000 training and 10,000
test images with 10 (or 100) image classes, and the latter consists of 73,257 training and 26,032 test
images with 10 digits.7 By following the experimental setup of Ma et al. [25], All networks were
trained using SGD with momentum 0.9, weight decay 10−4 and an initial learning rate of 0.1. The
learning rate is divided by 10 after epochs 40 and 80 for CIFAR-10/SVHN (120 epochs in total),
and after epochs 80, 120 and 160 for CIFAR-100 (200 epochs in total). For our method, we extract
the hidden features at {34, 46, 56, 67, 79, 89, 99}-th layers and {3, 7, 9, 11, 13, 15, 17, 19, 21, 23,
25, 27, 29, 31, 33}-th layers for DenseNet and ResNet, respectively.

Training method for noisy label learning. We consider the following training methods for noisy
label learning:

(a) Hard bootstrapping [35]: Training with new labels generated by a convex combination
(the hard version) of the noisy labels and their predicted labels.

(b) Soft bootstrapping [35]: Training with new labels generated by a convex combination (the
soft version) of the noisy labels and their predictions.

(c) Backward [34]: Training via loss correction by multiplying the cross-entropy loss by a
noise-aware correction matrix.

(d) Forward [34]: Training with label correction by multiplying the network prediction by a
noise-aware correction matrix.

(e) D2L [25]: Training with new labels generated by a convex combination of the noisy la-
bels and their predictions, where its weights are chosen by utilizing the Local Intrinsic
Dimensionality (LID). [24].

(f) Decoupling [28]: Updating the parameters only using the samples which have different
prediction from two classifier.

(g) MentorNet [18]: An extra teacher network is pre-trained and then used to select clean
samples for its student network.

(h) Co-teaching [12]: A simple ensemble method where each network selects its small-loss
training data and back propagates the training data selected by its peer network.

(i) Cross-entropy: the conventional approach of training with cross-entropy loss.

Adversarial attacks. In this paper, we consider the following attack methods: fast gradient sign
method (FGSM) [9], DeepFool [29] and Carlini-Wagner (CW) [4]. The FGSM directly perturbs
normal input in the direction of the loss gradient. Formally, non-targeted adversarial samples are
constructed as

xadv = x + εFGSM sign (5x`(y
∗, P (y|x))) ,

where εFGSM is a magnitude of noise, y∗ is the prediction of classifier and ` is a loss function to
measure the distance between the prediction and the ground truth. DeepFool works by finding the
closest adversarial samples with geometric formulas. CW is an optimization-based method which
arguably the most effective method. Formally, non-targeted adversarial samples are constructed as

arg min
xadv

λd(x,xadv)− `(y∗, P (y|xadv)),

where λ is penalty parameter and d(·, ·) is a metric to quantify the distance between an original
image and its adversarial counterpart. However, compared to FGSM, this method is much slower in
practice. For all experiments, L2 distance is used as a constraint. We used the library from [10] for
generating adversarial samples.8

For all experiments, the adversarial samples are generated by targeting a softmax
classifier or our generative classifier. Specifically, we generate the adversarial sam-
ples by attacking the ensemble of generative classifiers:

∑̀
α`P (y = c|f`(x)) =∑̀

α`
exp(µ̂>`,cΣ̂

−1
` f`(x)−0.5µ̂>`,cΣ̂

−1
` µ̂`,c+log β̂c)∑

c′ exp
(
µ̂>
`,c′ Σ̂

−1
` f`(x)−0.5µ̂>

`,c′ Σ̂
−1
` µ̂`,c′+log β̂c′

) . Here, we remark that a margin loss on

the logit layer of each generative classifier is used in the case of CW attacks9. Due to time
7We do not use the extra SVHN dataset for training.
8The code is available at https://github.com/facebookresearch/adversarial_image_defenses.
9Similar to Carlini & Wagner [4], we use 2000 random samples.

13

https://github.com/facebookresearch/adversarial_image_defenses


Dataset Target Data type Clean Uniform (20%) Uniform (40%) Uniform (60%)
L∞ Acc. L∞ Acc. L∞ Acc. L∞ Acc.

CIFAR-10

Softmax

Clean 0 95.01 0 79.28 0 61.85 0 35.02
FGSM 0.05 56.90 0.05 25.26 0.05 23.71 0.05 20.88

DeepFool 0.34 0.36 0.06 0.04 0.03 0.00 0.02 0.00
CW 0.09 0.02 0.04 0.57 0.02 0.40 0.01 0.27

DDGC

Clean 0 94.32 0 87.25 0 80.01 0 71.06
FGSM 0.05 94.59 0.05 78.40 0.05 59.33 0.05 52.87

DeepFool 0.44 5.25 0.09 66.26 0.04 71.77 0.02 68.76
CW 0.21 0.00 0.27 0.00 0.27 0.10 0.23 0.20

CIFAR-100

Softmax

Clean 0 77.51 0 60.92 0 44.08 0 23.43
FGSM 0.05 31.78 0.05 17.95 0.05 13.20 0.05 10.11

DeepFool 0.33 0.27 0.12 0.08 0.06 0.05 0.04 0.01
CW 0.06 0.05 0.03 0.23 0.02 0.13 0.01 0.01

DDGC

Clean 0 76.55 0 66.08 0 59.72 0 48.85
FGSM 0.05 72.44 0.05 42.25 0.05 34.06 0.05 31.31

DeepFool 0.32 8.50 0.14 28.40 0.09 30.90 0.07 35.86
CW 0.07 0.04 0.08 0.00 0.08 0.32 0.09 0.77

SVHN

Softmax

Clean 0 95.96 0 83.52 0 72.89 0 61.23
FGSM 0.20 54.96 0.20 42.58 0.20 24.61 0.20 24.42

DeepFool 0.52 1.30 0.09 0.14 0.06 0.13 0.05 0.17
CW 0.14 0.11 0.05 0.16 0.04 0.01 0.04 0.03

DDGC

Clean 0 96.09 0 91.67 0 87.16 0 80.52
FGSM 0.20 96.15 0.20 47.26 0.20 41.23 0.20 35.46

DeepFool 0.77 17.16 0.10 71.75 0.07 80.08 0.05 75.00
CW 0.27 0.00 0.26 1.00 0.25 0.30 0.29 0.50

Table 7: The L∞ mean perturbation and classification accuracy of ResNet-34 on clean and adver-
sarial samples.

Dataset Target Data type Clean Uniform (20%) Uniform (40%) Uniform (60%)
L∞ Acc. L∞ Acc. L∞ Acc. L∞ Acc.

CIFAR-10

Softmax

Clean 0 94.42 0 80.24 0 68.61 0 53.34
FGSM 0.05 32.50 0.05 22.84 0.05 22.49 0.05 20.90

DeepFool 0.14 0.20 0.03 0.05 0.03 0.10 0.02 0.01
CW 0.06 0.08 0.03 0.39 0.03 0.27 0.02 0.18

DDGC

Clean 0 93.49 0 87.25 0 81.04 0 74.72
FGSM 0.05 83.88 0.05 62.69 0.05 36.75 0.05 44.16

DeepFool 0.14 30.45 0.05 70.09 0.03 71.50 0.02 67.50
CW 0.12 0.00 0.11 0.04 0.12 0.09 0.23 0.54

CIFAR-100

Softmax

Clean 0 76.41 0 57.63 0 45.08 0 35.83
FGSM 0.05 18.73 0.05 12.74 0.05 10.55 0.05 9.07

DeepFool 0.12 0.10 0.05 0.00 0.03 0.01 0.02 0.01
CW 0.03 0.22 0.02 0.20 0.02 0.20 0.01 0.12

DDGC

Clean 0 73.65 0 62.19 0 53.98 0 45.27
FGSM 0.05 52.14 0.05 34.36 0.05 24.24 0.05 22.79

DeepFool 0.12 17.40 0.06 33.63 0.04 39.95 0.03 37.36
CW 0.07 0.18 0.08 1.04 0.07 2.31 0.06 3.86

SVHN

Softmax

Clean 0 96.59 0 86.92 0 81.91 0 71.18
FGSM 0.20 51.18 0.20 46.64 0.20 40.21 0.20 36.62

DeepFool 0.26 3.04 0.22 4.21 0.20 2.14 0.18 2.11
CW 0.12 0.15 0.12 0.31 0.10 0.16 0.10 0.09

DDGC

Clean 0 96.18 0 89.50 0 85.71 0 77.67
FGSM 0.20 90.74 0.20 54.87 0.20 41.91 0.20 42.91

DeepFool 0.26 50.00 0.23 58.59 0.20 66.81 0.14 63.68
CW 0.25 0.00 0.33 1.59 0.39 4.63 0.46 11.22

Table 8: The L∞ mean perturbation and classification accuracy (%) of DenseNet-100 on clean and
adversarial samples.

complexity, we only attack a generative classifier from a final layer in the case of DeepFool.
Table 7 and 8 report the statistics of adversarial attacks including the L∞ mean perturbation and
classification accuracy on adversarial attacks.
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Figure 3: Layer-wise characteristics of generative classifiers from (a)/(b) ResNet-34 and (c)/(d)
DenseNet-100 trained on the CIFAR-10 dataset.

Model Inference Method
Noisy Dataset

CIFAR-10 CIFAR-100 SVHN
20% 40% 60% 20% 40% 60% 20% 40% 60%

ResNet

Softmax 79.28 61.85 35.02 60.92 44.08 23.43 83.52 72.89 61.23
Softmax

+ fine-tuning (val) 80.48 69.42 54.16 51.15 35.17 20.41 85.10 81.93 75.06

Generative + MCD 83.04 68.04 42.74 63.20 51.71 33.96 89.60 78.88 66.96
Generative + MCD
+ ensemble (val) 87.25 80.01 71.06 66.08 59.72 48.85 91.67 87.16 80.52

DenseNet

Softmax 80.24 68.61 53.34 57.63 45.08 35.83 86.92 81.91 71.18
Softmax

+ fine-tuning (val) 82.47 74.38 63.25 48.69 35.97 27.73 86.83 76.39 68.13

Generative + MCD 85.96 78.34 66.16 58.22 48.54 37.44 88.64 84.08 74.47
Generative + MCD
+ ensemble (val) 87.25 81.04 74.72 62.19 53.98 45.27 89.50 85.71 77.67

Table 9: Comparison with softmax classifier fine-tuned with validation data. All values are percent-
ages and the best results are highlighted in bold if gain is bigger than 1%.

C Layer-wise characteristics of generative classifiers

Figure 3 shows the classification accuracy of the generative classifiers from different basic blocks of
ResNet-34 [13] and DenseNet-101 [16]. One can note that the generative classifiers from DenseNet
and ResNet have different patterns due to the architecture design. In the case of DenseNet, we
found that it produces meaning features after 20-th basic blocks. However, we remark that the per-
formances of the generative classifiers from low-level features (from 20 to 40-th layers) of DenseNet
are still more robust to adversarial attacks and noisy labels. Because of that, the ensemble of gen-
erative classifiers on DenseNet also improves the generalization from noisy labels and robustness to
adversarial attacks.

D Fine-tuning softmax layer using validation set

In this paper, we utilize a validation set, which consists of 500 images (i.e., only≤ 1% of the number
of training samples) with clean labels. For fair comparisons, one might also suggest fine-tuning the
softmax classifier (with fixed features) using the validation improve the classification accuracy. We
indeed measure the classification accuracy of softmax classifier after fine-tuning in Table 9. One can
note that the proposed method still outperforms softmax classifiers. Since 1% data is not enough
compared to the number of softmax classifiers, fine-tuning can decrease the performance in the case
of softmax classifier, while DDGC is still working well (it only trains the ensemble weights).

E More experimental results on adversarial attacks

In this section, we provide more experimental results on adversarial attacks. First, Table 10 and 11
show the classification accuracy on white-box adversarial attacks when we train ResNets using the
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Dataset Attack
type

Adversarial
attacks

Clean Uniform (20%) Uniform (40%) Uniform (60%)
Softmax / DDGC

CIFAR-10

Softmax
FGSM 56.90 / 57.51 25.26 / 57.11 23.71 / 59.32 20.88 / 54.97

DeepFool 0.36 / 18.48 0.04 / 71.14 0.00 / 73.21 0.00 / 68.92
CW 0.02 / 1.16 0.57 / 52.39 0.40 / 61.14 0.27 / 64.29

DDGC
FGSM 94.74 / 94.59 70.68 / 78.40 25.54 / 59.33 14.95 / 52.87

DeepFool 11.13 / 5.25 4.71 / 66.26 3.20 / 71.77 4.17 / 68.76
CW 0.00 / 0.00 0.20 / 0.00 0.20 / 0.10 0.20 / 0.20

CIFAR-100

Softmax
FGSM 31.78 / 31.94 17.95 / 30.23 13.20 / 30.81 10.11 / 35.62

DeepFool 0.27 / 9.84 0.08 / 37.07 0.05 / 42.15 0.01 / 40.82
CW 0.05 / 5.07 0.23 / 27.95 0.13 / 35.32 0.01 / 39.90

DDGC
FGSM 74.51 / 72.44 35.41 / 42.25 23.68 / 34.06 12.08 / 31.31

DeepFool 4.09 / 8.50 4.72 / 28.40 3.54 / 30.90 1.63 / 35.86
CW 0.95 / 0.04 0.86 / 0.00 0.31 / 0.32 0.22 / 0.77

SVHN

Softmax
FGSM 54.96 / 56.46 42.58 / 54.26 24.61 / 46.80 24.42 / 40.92

DeepFool 1.30 / 45.40 0.14 / 79.29 0.13 / 81.59 0.17 / 75.87
CW 0.11 / 13.39 0.16 / 56.58 0.01 / 68.22 0.03 / 61.93

DDGC
FGSM 96.19 / 96.15 40.82 / 47.26 19.80 / 41.23 18.13 / 35.46

DeepFool 13.00 / 17.16 17.58 / 71.75 19.66 / 80.08 27.83 / 75.00
CW 0.10 / 0.00 0.70 / 1.00 0.40 / 0.30 0.10 / 0.50

Table 10: Test accuracy (%) of ResNet on white-box adversarial attacks. We use the ensemble
version of DDGC, and the best results are highlighted in bold if gain is bigger than 1%.

Dataset Target Adversarial
attacks

Clean Uniform (20%) Uniform (40%) Uniform (60%)
Softmax / DDGC

CIFAR-10

Softmax
FGSM 74.72 / 74.53 35.21 / 64.06 24.64 / 67.93 20.70 / 59.87

DeepFool 1.09 / 14.45 0.04 / 61.54 0.05 / 69.22 0.00 / 61.40
CW 0.05 / 1.31 0.00 / 40.81 0.00 / 59.86 0.00 / 57.22

DDGC
FGSM 94.68 / 94.44 59.01 / 73.32 31.60 / 67.96 12.83 / 55.54

DeepFool 9.41 / 10.77 9.77 / 44.86 9.68 / 66.50 9.36 / 60.40
CW 0.14 / 0.04 0.04 / 0.00 0.18 / 0.04 0.31 / 0.00

CIFAR-100

Softmax
FGSM 37.73 / 42.57 24.04 / 47.00 16.52 / 46.46 11.52 / 41.62

DeepFool 0.13 / 10.40 0.04 / 36.09 0.00 / 42.95 0.00 / 41.45
CW 0.00 / 9.31 0.04 / 34.81 0.00 / 44.04 0.00 / 41.54

DDGC
FGSM 62.60 / 62.88 40.98 / 51.68 25.35 / 43.29 10.92 / 36.39

DeepFool 2.81 / 6.22 3.45 / 21.36 2.31 / 27.36 1.86 / 34.13
CW 1.18 / 0.00 0.81 / 0.00 0.45 / 0.04 0.27 / 0.04

SVHN

Softmax
FGSM 57.86 / 60.31 44.25 / 66.10 30.17 / 60.10 27.59 / 56.45

DeepFool 2.54 / 35.72 0.18 / 77.50 0.13 / 79.63 0.00 / 75.40
CW 0.50 / 19.40 0.04 / 63.68 0.04 / 69.13 0.00 / 66.90

DDGC
FGSM 96.42 / 96.35 50.07 / 61.63 22.10 / 52.05 18.79 / 51.15

DeepFool 15.81 / 21.81 20.95 / 73.31 18.18 / 78.09 33.36 / 76.27
CW 0.27 / 0.63 0.77 / 0.90 0.36 / 0.54 1.18 / 1.40

Table 11: Test accuracy (%) of ResNet optimized by adversarial training on CIFAR-10. We test
the white-box adversarial attacks. We use the ensemble version of DDGC, and best results are
highlighted in bold if the gain is bigger than 1%.

cross-entropy loss and adversarial training, respectively. We also report the classification accuracy
of DenseNet on white-box and black-box adversarial attacks in Table 12 and 13, respectively.
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Dataset Target Adversarial
attacks

Clean Uniform (20%) Uniform (40%) Uniform (60%)
Softmax / DDGC

CIFAR-10

Softmax
FGSM 32.50 / 38.00 22.84 / 56.05 22.49 / 46.51 20.90 / 52.63

DeepFool 0.20 / 36.09 0.05 / 76.94 0.10 / 75.03 0.01 / 68.83
CW 0.08 / 4.27 0.39 / 55.15 0.27 / 48.83 0.18 / 54.83

DDGC
FGSM 83.92 / 83.88 53.33 / 62.69 20.51 / 36.75 13.97 / 44.16

DeepFool 30.81 / 30.45 6.95 / 70.09 12.22 / 71.50 13.68 / 67.50
CW 0.00 / 0.00 0.13 / 0.04 0.22 / 0.09 0.63 / 0.54

CIFAR-100

Softmax
FGSM 18.73 / 22.65 12.74 / 27.18 10.55 / 22.36 9.07 / 22.09

DeepFool 0.10 / 19.31 0.00 / 40.09 0.01 / 42.10 0.01 / 37.46
CW 0.22 / 12.87 0.20 / 30.14 0.20 / 32.20 0.12 / 31.46

DDGC
FGSM 54.25 / 52.14 30.14 / 34.26 19.67 / 24.24 12.46 / 22.79

DeepFool 15.27 / 17.40 8.77 / 33.63 6.45 / 39.95 7.90 / 37.36
CW 2.45 / 0.18 1.09 / 1.04 0.90 / 2.31 1.00 / 3.86

SVHN

Softmax
FGSM 51.18 / 53.75 46.64 / 50.98 40.21 / 46.60 36.62 / 40.05

DeepFool 3.04 / 66.30 4.21 / 71.28 2.14 / 71.97 2.11 / 62.26
CW 0.15 / 27.01 0.31 / 36.48 0.16 / 33.89 0.09 / 26.86

DDGC
FGSM 90.39 / 90.74 52.14 / 54.87 36.31 / 41.91 41.18 / 42.91

DeepFool 41.63 / 50.00 26.40 / 58.59 36.27 / 66.81 52.54 / 63.68
CW 1.45 / 0.00 1.40 / 1.59 3.31 / 4.63 11.36 / 11.22

Table 12: Test accuracy (%) of DenseNet on white-box adversarial attacks. We use the ensemble
version of DDGC, and the best results are highlighted in bold if gain is bigger than 1%.

Dataset Target Adversarial
attacks

Clean Uniform (20%) Uniform (40%) Uniform (60%)
Softmax / DDGC

CIFAR-10

Softmax
FGSM 62.96 / 64.66 60.63 / 70.19 47.77 / 55.11 40.07 / 62.02

DeepFool 87.68 / 87.78 76.48 / 84.54 67.93 / 80.38 51.31 / 73.57
CW 52.12 / 54.92 63.48 / 74.23 55.41 / 67.45 45.03 / 69.03

DDGC
FGSM 87.69 / 87.82 63.25 / 70.94 44.47 / 51.43 38.14 / 59.76

DeepFool 88.31 / 88.36 75.81 / 84.31 66.04 / 79.86 52.36 / 73.68
CW 24.31 / 24.22 26.77 / 31.04 19.68 / 19.45 15.36 / 15.81

CIFAR-100

Softmax
FGSM 48.84 / 45.83 35.07 / 39.32 24.60 / 27.43 21.64 / 28.72

DeepFool 66.87 / 62.53 53.00 / 56.05 43.09 / 48.18 32.42/ 41.71
CW 55.74 / 53.09 44.70 / 49.49 36.49 / 41.53 29.67 / 38.97

DDGC
FGSM 61.21 / 57.29 39.52 / 42.20 26.35 / 28.31 22.82 / 29.00

DeepFool 68.04 / 64.95 52.04 / 55.86 43.27 / 48.36 33.59 / 42.31
CW 37.86 / 34.09 23.31 / 26.81 18.63 / 20.81 17.54 / 24.68

SVHN

Softmax
FGSM 58.08 / 59.10 53.76 / 56.76 47.58 / 52.08 46.82 / 47.91

DeepFool 89.59 / 90.13 86.60 / 88.25 82.60 / 85.95 81.63 / 82.81
CW 66.35 / 68.61 68.27 / 71.23 60.25 / 66.23 64.19 / 66.20

DDGC
FGSM 89.87 / 90.23 52.57 / 55.92 43.59 / 47.60 46.66 / 47.91

DeepFool 87.40 / 88.04 81.18 / 83.95 79.90 / 83.72 78.81 / 80.31
CW 40.59 / 41.50 39.68 / 41.18 38.59 / 39.77 45.45 / 46.63

Table 13: Test accuracy (%) of DenseNet on black-box adversarial attacks. We use the ensemble
version of DDGC, and the best results are highlighted in bold if gain is bigger than 1%.

F Proof of Theorem 1

In this section, we present a proof of Theorem 1, which consists of three statements: the limit of
estimated error ratio (3), estimation error ratio (4) and mahalanobis distance (5). We prove each
statement one by one as stated in below. For convenience, we skip to mention the Continuous
Mapping Theorem10 and the number of training samples N goes to infinity for all convergences in
the proof.

F.1 Proof of the limit of estimation error (4)

We start with the following lemma, which shows the convergences of sample and MCD estimators
with single Gaussian distribution as the number of training samples N goes to infinity.

10P. Billingsley, Convergence of Probability Measures, John Wiley & Sons, 1999
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Lemma 1. Suppose we have N number of d-dimensional training samples XN = {x1, · · · ,xN}
andXN contains outlier samples with the fixed fraction δout < 1. We assume the outlier samples are
from an arbitrary distribution Pout with zero mean and finite covariance matrix σ2

outI, and the other
samples are from a multivariate Gaussian distribution Pdata with mean µ and covariance matrix
σ2I. Let µ̄ and Σ̄ be the mean and covariance matrix of sample estimator, and let µ̂ and Σ̂ be
the mean and covariance matrix of MCD estimator which selects samples from XN with the fixed
fraction d

N < δmcd < 1 to optimize its objective (2). Then the mean and covariance matrix of sample
estimator converge almost surely to below as N →∞ :

µ̄
a.s.→ (1− δout)µ, Σ̄

a.s.→
(
(1− δout)σ2 + δoutσ

2
out

)
I + δout (1− δout)µµT .

In addition, if δmcd ≤ 1 − δout and σ2 < σ2
out, the mean and covariance matrix of MCD estimator

converge almost surely to below as N →∞ :

µ̂
a.s.→ µ, Σ̂

a.s.→ σ2I.

A proof of the above lemma is given in appendix F.4, where it is built upon the fact that the deter-
minant of covariance matrix with some assumptions can be expressed as the d-th degree polynomial
of outlier ratio.

Lemma 1 states the convergences of sample and MCD estimators on single multivariate Gaussian
distribution. One can extend it to C number of multivariate Gaussian distributions, which have the
class mean µc and class covariance matrix Σc on each class label c ∈ {1, ..., C}, by the assumptions
A1 ∼ A5. Then one can induce the class mean of MCD and sample estimators converge almost
surely as follows:

µ̂c
a.s.→ µc, µ̄c

a.s.→ (1− δout)µc,
which implies that

‖µc − µ̂c‖1
a.s.→ 0, ‖µc − µ̄c‖1

a.s.→ δout‖µc‖1.
This completes the proof of the limit of estimation error (4).

F.2 Proof of the limit of mahalanobis distance ratio (5)

From the assumptions A1, all class covariance matrices are the same, i.e., Σc = σ2I. Then tied
covariance matrices Σ̄ and Σ̂ are given by gathering Σ̄c and Σ̂c on each class c respectively:

Σ̄ =

∑
cNcΣ̄c∑
cNc

=

∑
c Σ̄c

C
, Σ̂ =

∑
cKcΣ̂c∑
cKc

=

∑
c Σ̂c

C
. (6)

From the tied covariance matrices (6) and Lemma 1, one can induce their convergences and limits
as follow:

Σ̄
a.s.→
(
(1− δout)σ2 + δoutσ

2
out

)
I + δout (1− δout)

1

C

∑
c

µcµ
T
c , (7)

Σ̂
a.s.→ σ2I.

Since the assumption A2 gives a diagonal matrix D = 1
C

∑
c µcµ

T
c , the limit of covariance matrix

of sample estimator (7) and its inverse are also diagonal matrices. Then the limit of inverse matrix
Σ̄−1 is given as follows:

Σ̄−1 a.s.→
((

(1− δout)σ2 + δoutσ
2
out

)
I + δout (1− δout) D

)−1
. (8)

Since the limit of inverse matrix Σ̄−1 (8) is a diagonal matrix, the limit of the mahalanobis distance
between µ̄c and µ̄c′ is given as follows:

(µ̄c − µ̄c′)T Σ̄−1(µ̄c − µ̄c′) = tr
(
Σ̄−1(µ̄c − µ̄c′)(µ̄c − µ̄c′)T

)
a.s.→
∑
i

(1− δout)2
(µci − µc′i)2

(1− δout)σ2 + δoutσ2
out + δout (1− δout)Di

, (9)
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where D = diag (D1, ..., Dd). By the assumption A4, the denominator term of (9) is greater than
σ2 for all i, i.e.,

(1− δout)σ2 + δoutσ
2
out + δout (1− δout)Di ≥ σ2 for ∀ i.

Then the limit of mahalanobis distance between mean of sample estimators (9) has the following
upper bound:

(µ̄c − µ̄c′)T Σ̄−1(µ̄c − µ̄c′)
a.s.→
∑
i

(1− δout)2
(µci − µc′i)2

(1− δout)σ2 + δoutσ2
out + δout (1− δout)Di

≤ (1− δout)2 (µi − µc)T (µi − µc)
σ2

. (10)

One can also induce the limit of the mahalanobis distance between mean of MCD estimators µ̂c and
µ̂c′ as follows:

(µ̂i − µ̂c)T Σ̂−1(µ̂i − µ̂c) = tr
(
Σ̂−1(µ̂i − µ̂c)(µ̂i − µ̂c)T

)
a.s.→ (µi − µc)T (µi − µc)

σ2
. (11)

From the limits of mahalanobis distance (10) and (11), the limit of mahalnobis distance ratio (5) is
induced as follows:

(µ̄c − µ̄c′)T Σ̄−1(µ̄c − µ̄c′)
(µ̂c − µ̂c′)T Σ̂−1(µ̂c − µ̂c′)

a.s.→
∑
i

(1−δout)2(µci−µc′i)
2

(1−δout)σ2+δoutσ2
out+δout(1−δout)Di

(µi−µc)T (µi−µc)
σ2

≤
(1− δout)2 (µi−µc)T (µi−µ̄c)

σ2

(µi−µc)T (µi−µc)
σ2

= (1− δout)2 ≤ 1.

This completes the proof of the limit of mahalanobis distance ratio (5).

F.3 Proof of the limit of estimated error ratio (3)

Remind that the estimated error B(µ̂c, µ̂c′ ,Σ, Σ̂) is defined as follows:

B(µ̂c, µ̂c′ ,Σ, Σ̂) := exp

−1

8

[
(µ̂c − µ̂c′)T Σ̂−1(µ̂c − µ̂c′)

]2
(µ̂c′ − µ̂c)T Σ̂−1ΣΣ̂−1(µ̂c′ − µ̂c)

 . (12)

By the property of trace operator, the inner term of estimated error (12) is equal to

[(µ̂c − µ̂c′)T Σ̂−1(µ̂c − µ̂c′)]2

(µ̂c′ − µ̂c)T Σ̂−1ΣΣ̂−1(µ̂c′ − µ̂c)
=

tr
(
Σ̂−1(µ̂c − µ̂c′)(µ̂c − µ̂c′)T

)2

tr
(
Σ̂−1ΣΣ̂−1(µ̂c − µ̂c′)(µ̂c − µ̂c′)T

) . (13)

From the right hand side of (13), the negative logarithms of estimated error (12) of sample and MCD
estimators converge as follows:

−8 log(B(µ̄c, µ̄c′ ,Σ, Σ̄)) =
tr
(
Σ̄−1(µ̄c − µ̄c′)(µ̄c − µ̄c′)T

)2
tr
(
Σ̄−1σ2IΣ̄−1(µ̄c − µ̄c′)(µ̄c − µ̄c′)T

)
a.s.→ (1− δout)2

σ2

(∑
i

(µci−µc′i)
2

(1−δout)σ2+δoutσ2
out+δout(1−δout)Di

)2

∑
i

(µci−µc′i)
2

((1−δout)σ2+δoutσ2
out+δout(1−δout)Di)

2

, (14)

−8 log(B(µ̂c, µ̂c′ ,Σ, Σ̂))
a.s.→

tr
(
(σ2I)−1(µc − µc′)(µc − µc′)T

)2
tr ((σ2I)−1σ2I(σ2I)−1(µc − µc′)(µc − µ̂c′)T )

=
(µc − µc′)T (µc − µc′)

σ2
. (15)
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The relation between the limits of (14) and (15) can be induced by the Cauchy-Schwarz inequality,∑
i

(µci − µc′i)2
∑
i

(
µci − µc′i

(1− δout)σ2 + δoutσ2
out + δout (1− δout)Di

)2

≥

(∑
i

(µci − µc′i)2

(1− δout)σ2 + δoutσ2
out + δout (1− δout)Di

)2

.

The above inequality implies

(µc − µc′)T (µc − µc′) ≥

(∑
i

(µci−µc′i)
2

(1−δout)σ2+δoutσ2
out+δout(1−δout)Di

)2

∑
i

(µci−µc′i)
2

((1−δout)σ2+δoutσ2
out+δout(1−δout)Di)

2

.

From the fact that (1− δout)2 ≤ 1, the limits of (14) and (15) hold the following inequality:

(µc − µc′)T (µc − µc′)
σ2

≥ (1− δout)2

σ2

(∑
i

(µci−µc′i)
2

(1−δout)σ2+δoutσ2
out+δout(1−δout)Di

)2

∑
i

(µci−µc′i)
2

((1−δout)σ2+δoutσ2
out+δout(1−δout)Di)

2

. (16)

Let lim
N→∞

− 8 log(B(µ̄c, µ̄c′ ,Σ, Σ̄)) and lim
N→∞

− 8 log(B(µ̂c, µ̂c′ ,Σ, Σ̂)) denote the limits of the

negative logarithms of estimated error (12) of sample and MCD estimators, respectively. From (14),
(15) and (16), it holds that

lim
N→∞

B(µ̂c, µ̂c′ ,Σ, Σ̂) ≤ lim
N→∞

B(µ̄c, µ̄c′ ,Σ, Σ̄).

This implies that the limit of estimated error ratio (3) is smaller than one, i.e.,

lim
N→∞

B(µ̂c, µ̂c′ ,Σ, Σ̂)

B(µ̄c, µ̄c′ ,Σ, Σ̄)
≤ 1.

This completes the proof of Theorem 1.

F.4 Proof of Lemma 1

In this part, we present a proof of Lemma 1. We show the almost surely convergences of sample and
MCD estimators as the number of training samples N goes to infinity.

Proof of the convergence of sample estimator. First of all, the set of training samples XN =
{x1, · · · ,xN} contains outlier samples with the fixed fraction δout. So, XN is from a mixture distri-
bution Pmix = (1− δout)Pdata+δoutPout. Then mean and covariance matrix of sample estimator, µ̄
and Σ̄, estimate mean µmix and covariance matrix Σmix of the mixture distribution Pmix, respectively.
One can induce µmix and Σmix directly as follow:

µmix = (1− δout)µ, Σmix = (1− δout)σ2I + δoutσ
2
outI + δout (1− δout)µµT . (17)

Since Pmix has the finite covariance matrix, i.e., Σmix < ∞, one can apply the the Strong Law
of Large Numbers11 to the sample estimator of the mixture distribution Pmix. Then the mean and
covariance matrix of sample estimator converge almost surely to the mean and covariance matrix of
Pmix, respectively:

µ̄
a.s.→ µmix, Σ̄

a.s.→ Σmix.

This completes the proof of the convergence of sample estimator.

Proof of the convergence of MCD estimator. Consider a collection Eq of subsets XK,q ⊂ XN
with the size K (= bδmcdNc), and each subset XK,q contains the outlier samples with the fraction
q ∈ [0, 1]. Then XK,q ∈ Eq is from a mixture distribution Pq = (1− q)Pdata + qPout. One can
induce that the mean µq and covariance matrix Σq of the mixture distribution Pq as (17):

µq = (1− q)µ, Σq = (1− q)σ2I + qσ2
outI + q(1− q)µµT . (18)

11W. Feller, An Introduction to Probability Theory and Its Applications, John Wiley & Sons, 1968
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Thus sample mean estimator µ̄XK,q
and covariance estimator Σ̄XK,q

of a subset XK,q converge
almost surely to µq and Σq respectively:

µ̄XK,q

a.s.→ µq, Σ̄XK,q

a.s.→ Σq,

by the Strong Law of Large Numbers.

On the other hand, there is a subset X ∗K,q∗ ⊂ XN in Eq∗ which is selected by MCD estimator.
Then the determinant of its covariance matrix is the minimum over all XK ⊂ XN , and µ̄X∗

K,q∗
=

µ̂
a.s.→ µq∗ , Σ̄X∗

K,q∗
= Σ̂

a.s.→ Σq∗ as N → ∞. Since the determinant is a continuous funciton, the
Continuous Mapping Theorem12 implies

min
XK,q⊂XN

det(Σ̄XK,q
)
a.s.→ min

q
det
(
Σq

)
,

and

min
XK,q⊂XN

det(Σ̄XK,q
) = det(Σ̄X∗

K,q∗
) = det(Σ̂)

a.s.→ det
(
Σq∗

)
.

Now, we’d like to show

min
q

det
(
Σq

)
= det

(
Σq∗

)
= det (Σ0) , (19)

to complete the proof of Lemma 1.

By the assumption δmcd ≤ 1 − δout, E0 is non-empty. It shows the existence of Σ0. From the
covariance matrix Σq (18), det(Σq) is a d-th degree polynomial of q as follow:

det(Σq) = det
(
(1− q)σ2I + qσ2

outI + q(1− q)µµT
)

=
(
(1− q)σ2 + qσ2

out

)d−1 (
(1− q)σ2 + qσ2

out + q(1− q)µTµ
)
.

Since the assumption gives σ2
out > σ2, det(Σq) has the lower bound det(Σ0) as follow:

det(Σq)=
(
(1− q)σ2 + qσ2

out

)d−1 (
(1− q)σ2 + qσ2

out + q(1− q)µTµ
)

≥
(
σ2
)d−1 (

σ2 + q(1− q)µTµ
)

≥
(
σ2
)d−1

σ2 = det(Σ0).

Then det(Σq) ≥ det(Σ0) for all q ∈ [0, 1] and the equality holds for only q = 0. It implies q∗ = 0
and (19) is the shown. Therefore the mean and covariance matrix of MCD estimator converge almost
surely to µ and σ2I , respectively:

µ̂
a.s.→ µ0 = µ, Σ̂

a.s.→ Σ0 = σ2I.

This completes the proof of Lemma 1.

12P. Billingsley, Convergence of Probability Measures, John Wiley & Sons, 1999
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