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Abstract

We provide frequentist estimates of aleatoric and epistemic uncertainty for deep
neural networks. To estimate aleatoric uncertainty we propose simultaneous quan-
tile regression, a loss function to learn all the conditional quantiles of a given
target variable. These quantiles lead to well-calibrated prediction intervals. To
estimate epistemic uncertainty we propose training certificates, a collection of di-
verse non-trivial functions that map all training samples to zero. These certificates
map out-of-distribution examples to non-zero values, signaling high epistemic
uncertainty. We compare our proposals to prior art in various experiments.

1 Introduction

Deep learning permeates our lives, with prospects to drive our cars and decide our medical treatments.
These ambitions will unlikely materialize if deep models remain unable to assess their confidence
when performing in diverse situations. Being aware of uncertainty in prediction is crucial throughout
multiple scenarios. First, when deciding to abstain from prediction. Abstaining is a reasonable
strategy to deal with anomalies [4], outliers [13]], out-of-distribution examples [25]], defend against
adversarial examples [27]], or delegate high-risk predictions to humans [5]. Deep classifiers do not
“know what they know”, and may confidently assign one of the training categories to objects that
they have never seen. Second, when active learning [24], the problem of deciding what examples
should humans annotate to maximally improve the performance of a model. Third, when comparing
models in cases where the structure of the noise must be captured with fidelity, including applications
requiring well-calibrated prediction intervals, as well as causal discovery [21]. Finally, providing
prediction uncertainties is one of the first steps towards model interpretability [1]].

Most taxonomies consider three sources of uncertainty: approximation, aleatoric, and epistemic
uncertainties [7]]. First, approximation uncertainty describes the errors made by simplistic models
unable to fit complex data (e.g., the error made by a linear model fitting a sinusoidal curve). Since
the sequel focuses on deep neural networks, which are known to be universal approximators [6],
we assume that the approximation uncertainty is negligible and omit its analysis. Second, aleatoric
uncertainty (from the Greek word alea, meaning “rolling a dice”) accounts for the stochasticity of the
data. Aleatoric uncertainty describes the variance of the conditional distribution of our target variable
given our features. This type of uncertainty arises due to unmeasured variables or measurement
errors, and cannot be reduced by collecting more data from the same distribution. Third, epistemic
uncertainty (from the Greek word episteme, meaning “knowledge”) describes the errors made by the
model’s lack of knowledge about certain regions of the feature space. Therefore, epistemic uncertainty
is inversely proportional to the density of our features as given by the training distribution, and can
be reduced by collecting data in low density regions.

Prior literature on uncertainty estimation for deep neural networks is dominated by approximate
Bayesian methods [[12, 2, {14} 115} 29], many of them relying on Dropout at test time |10} [14]. On the
other hand, frequentist approaches rely on expensive ensembling [3]], and have been explored only
recently [22] 19 23]]. Here we propose frequentist, scalable, single deep model methods to estimate
aleatoric (Section [2) and epistemic (Section [3)) uncertainty in deep models.
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2 Simultaneous quantile regression for aleatoric uncertainty

Let F(y) = P(Y < y) be the strictly monotone cumulative distribution function of a target variable Y’
taking real values 3. Consequently, let F~1(7) = inf {y : F'(y) > 7} denote the quantile distribution
function of the same variable Y, for all quantile levels 0 < 7 < 1. The goal of quantile regression is
to estimate a given quantile level 7 of the target variable Y, when conditioned to the values z taken
by a feature variable X. That is, we are interested in building a model §j = fT(at) approximating the
conditional quantile distribution function y = F~!(7|X = x). One strategy to estimate such models
is to minimize their pinball loss 9,17, 16, |8]:
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As expected, one recovers the absolute loss when building a quantile regressor for the level 7 = %
More generally, the pinball loss ¢, estimates the 7-th quantile consistently [26].

~

Now, let us collect a dataset iid feature-target pairs (x1,y1), . . ., (€n, Yn ). Then, we may estimate the
conditional quantile distribution of Y given X at the quantile level 7 as the empirical risk minimizer

fr=argming L5 0 (f(x), 1)

Instead, we propose to estimate all the quantile levels simultaneously by solving:
arg min s IS Ervpo) [€-(f(2i,7),3:)]. In practice, we minimize this expression using SGD,
and sample fresh random quantile levels for all training points at each mini-batch during training. The
resulting function f(z,7) can be used to compute any quantile of the conditional variable Y| X = x.

This allows to compute the entire conditional distribution of the target variable and, in particular, our
proposed estimate for aleatoric uncertainty, the 1 — « prediction interval around the median:

ug(2®) == f(a*,1 —a/2) — f(z",a/2). (2)
In contrast to prior art [10} [19} 23], our solution provides a prediction model able to estimate the
entire profile of non-Gaussian (e.g. skew, asymmetric, multimodal) heteroskedastic noises in data.

Finally, a known phenomenon in the statistics literature of quantile regression is the problem of
crossing quantiles [16], that is, obtaining predictions f(x,7) > f(z, 7 + ¢€) for some ¢ > 0. One way

to alleviate this issue is adding a regularization term max(— w, 0) for each training point z;.

3 Training certificates for epistemic uncertainty

Consider the problem of binary classification between a positive distribution P and a negative
distribution (). Construct a binary classifier f, mapping samples from P to zero, and mapping
samples from @) to one. The classifier f is determined by the relative position of P and Q). Thus, if
we consider a second binary classification problem between the same P and a different )’, the new
optimal classifier f’ may differ significantly from f. However, both classifiers f and f’ have one
treat in common: they map samples from the positive distribution P to zero.

The previous thought experiment illustrates the difficulty of estimating epistemic uncertainty when
learning from a positive distribution P without any reference to a negative, “out-of-domain” distri-
bution (). That is, we are interested not only in one binary classifier mapping samples from P to
zero, but in the infinite collection of such classifiers. Considering the infinite collection of classifiers
mapping samples from the positive distribution P to zero, their class-probabilities should depart
significantly from zero only at samples not from P, signaling high epistemic uncertainty.

This intuition motivates our epistemic uncertainty estimate. Consider a deep model y = f(¢4(x))
trained on feature-target samples drawn from the joint distribution P(X,Y"). Construct the dataset
of high-level representations of training examples, denoted by ® = {¢$(x;)}? ;. Second, train a
collection of training certificates c1, . . ., c. Each training certificate c; is a simple neural network
trained to map the dataset ® to zero. Since we want diverse, non-trivial certificates, we train each
certificate from a different random initialization and require their Lipschitz constant to be equal to
one. Finally, we define our estimate of epistemic uncertainty as:

Ue(x™) := maxkcj(zb(x*)) 3)

j=1,...,

Certificates extend the common epistemic uncertainty estimate u(z*) = ming(,,)ce [|¢(zi) —

#(2*)||3, which can be written as a collection of n linear certificates with coefficients fixed by the
feature representation of each training example.



4 Experiments

Prediction Intervals We evaluate our aleatoric uncertainty estimate (2)) to construct 95% Prediction
Intervals (PIs). These are intervals containing the true prediction about the target variable with at least
95% probability. The quality of prediction intervals is measured by their Prediction Interval Coverage
Probability (PICP, the number of true observations falling inside the bounds of the estimated PI), and
their Mean Prediction Interval Width (MPIW, the width of the interval averaged across all predictions).
compares the PICP/MPIW metrics obtained by QualityDriven [23]], ConditionalGaussian
[19], Dropout [10]], and our proposed ConditionalQuantile, across four common datasets [[12]. The
proposed simultaneous quantile regression (ConditionalQuantile) is able to provide the narrowest
(smallest MPIW) and most calibrated (PICP ~ 95%) prediction intervals.

In practice while using simultaneous estimation we did not observe the issue of quantile crossing, so
we excluded the regularization term for this experiment.
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Figure 1: Experiments on prediction intervals. Multiple markers per baseline correspond to different
hyperparameter sets, boldface markers are the best choices.

Causal Discovery Recently [28]] it was suggested that the pinball loss can be used as a proxy to
estimate Kolmogorov complexity [18]]. In the context of detecting the causal direction between two
variables X and Y, this means that we can interpret the regression model with lower pinball loss
(from the one mapping X to Y and the one mapping Y to X) as the one following the true causal
model. shows that using multiple quantile levels (m) to asses the quality of a model serves
for causal discovery purposes, on par with the state-of-the-art on six different cause-effect datasets
(See Sec. 4 from [28]).

Out-of-distribution examples We use our estimate of epistemic uncertainty (3) to detect out-of-
distribution examples. First, consider a dataset with 10 classes, and split these 10 classes at random
into 5 “in-distribution” classes and 5 “out-of-distribution” classes. Second, train a VGG-19 neural
network on the train data from the in-distribution classes, and evaluate the epistemic uncertainty on
the test data from the in-distribution and out-of-distribution classes. The training certificates were
implemented as a single linear layer. The number of units in the layer corresponds to the number of
certificates requested. We leverage such implementation to jointly train all of the certificates. The
number of certificates used for each dataset was chosen from [10, 100, 1000] according to the lowest
accuracy obtained.

(right) shows the out-of-distribution detection accuracy obtained by different uncertainty
estimation methods, where threshold to distinguish “in” or “out” of distribution examples is chosen
optimally for each method. We compare against Gaussian process uncertainty (covariance), distance
to nearest training sample in feature space, softmax entropy, softmax margin, geometrical margin,
largest softmax score [[11]], the Odin detector [20], and an oracle trained on the test samples.

Finally, we also obtained interesting results for detecting adversarial examples and active learning
scenarios, however, due to lack of space, we defer these experiments to future/extended versions of
this manuscript.



ml CIFAR  Fashion ~ MNIST ~ SVHN | mean

m3

ms certificates 0.290 0.170 0.090 0.136 \ 0.171
covariance 0.330 0.305 0.087 0.165 0.222
distance 0.345 0.362 0.094 0.218 0.255
entropy 0.338 0.176 0.120 0.130 0.191
functional 0.336 0.178 0.103 0.129 0.187
geometrical 0.386 0.386 0.142 0.391 0.326
largest 0.337 0.176 0.117 0.132 0.191
Odin 0.485 0.477 0.496 0.459 0.479
oracle 0.250 0.155 0.057 0.119 0.145

Figure 2: Experiment on causal discovery (left) and out-of-distribution detection (right).
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