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Abstract

We introduce ‘semi-unsupervised learning’, a problem regime related to transfer
learning and zero/few shot learning where, in the training data, some classes are
sparsely labelled and others entirely unlabelled. Models able to learn from training
data of this type are potentially of great use as many real-world datasets are like
this. Here we demonstrate a new deep generative model for classification in this
regime. Our model, a Gaussian mixture deep generative model, demonstrates
superior semi-unsupervised classification performance on MNIST to model M2
from Kingma and Welling (2014).

1 Introduction

While developing machine learning solutions, the amount of unlabelled data is typically much larger
than the amount of labelled data. Further, there is selection bias: the labelled data is often from a
biased sample of the overall data distribution. Rare class categories might be entirely unobserved in
the labelled dataset, only appearing in unlabelled data.

Thus we are interested in the case where an unlabelled instance of data could be from one of the
sparsely-labelled classes or from an entirely-unlabelled class. We call this ‘semi-unsupervised
learning’. Here we are jointly performing semi-supervised learning on sparsely-labelled classes, and
unsupervised learning on completely unlabelled classes. We give a deep generative model [1, 2] that
can solve this problem.

Semi-unsupervised learning has similarities to some varieties of zero-shot learning (ZSL), where deep
generative models have been of interest [3], but in ZSL one has access to auxiliary side information
(commonly an ‘attribute vector’) for data at training time, which we do not. So our regime is
equivalent to transductive generalised ZSL, but with no side information [4]. It also has similarities
to transfer learning. In Cook et al.’s terms [5], ‘semi-unsupervised learning’ is related to uninformed
semi-supervised transductive transfer learning but here we use our source and target information
jointly, and our discrete label space can either be the same or different for our labelled and unlabelled
data. We show our model’s utility for MNIST image data classification.1

2 Deep Generative Models

2.1 Variational Auto-Encoder

In a deep generative model, the parameters of the distributions within a probabilistic graphical
model are themselves parameterised by neural networks. The simplest is a variational autoencoder

1Note: related work-in-progress, with a focus on application to human activity recognition, is in the NeurIPS
ML4Health Workshop 2018, titled ‘Semi-unsupervised Learning of Human Activity using Deep Generative
Models’.
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[1, 2], the deep version of factor analysis. Here there is a continuous unobserved latent z and
observed data x. The joint probability is pθ(x, z) = pθ(x|z)p(z) with p(z) = N (0, I) and pθ(x|z) =
N (µθ(z),Σθ(z)) where µθ(z),Σθ(z) are each parameterised by neural networks with parameters θ.
As exact inference for p(z|x) is intractable, it is standard to perform stochastic amortised variational
inference to obtain an approximation q(z|x) to the true posterior.

For a VAE, introduce a recognition network qφ(z|x) = N (µφ(x),Σφ(x)) (where µφ(z),Σφ(z) are
neural networks with parameters θ). Through joint optimisation over {θ, φ} using stochastic gradient
descent we aim to find the point-estimates of the parameters {θ, φ} that maximises the evidence
lower bound L(x) = −KLz(qφ(z|x)||pθ(x, z)). For the expectation over z ∼ qφ(z|x, y) in L(x)
we take Monte Carlo (MC) samples. To take derivatives through these samples wrt θ, φ use the
‘reparameterisation trick’, rewriting a sample from a Gaussian as a deterministic function of sample
from N (0, I):

z ∼ N (µ, σ2)⇐⇒ ε ∼ N (0, I), z = µ+ σ · ε (1)
thus we can differentiate a sample w.r.t. µ, σ2, so we can differentiate our MC approximation w.r.t
θ, φ.

2.2 Semi-supervised Learning with Deep Generative Models

To perform semi-supervised classification with a deep generative model, introduce a dis-
crete class variable y into the generative model and into the recognition networks. There
will be two evidence lower bounds for the model, one where y is a latent variable
to be inferred: L(x) = −KLz,y(qφ(z, y|x)||pθ(x, y, z)) and one where y is observed:
L(x, y) = −KLz(qφ(z|x, y)||pθ(x, y, z)).

In this work we build on the M2 model developed by Kingma and Welling (2014) [6]. Here
pθ(x, y, z) = pθ(x|y, z)p(y)p(z) and qφ(z, y|x) = qφ(z|y, x)qφ(y|x), qφ(y|x) = Cat(πφ(x)) and
qφ(z|x, y) = N (µφ(x, y),Σφ(x, y)). p(y) is the discrete prior on y. Via simple manipulation one
can show L(x) =

∑
y[qφ(y|x)L`(x, y)] +H(qφ(y|x)). Note that qφ(y|x), which is to be our trained

classifier at the end, only appears in L(x), so it would only be trained on unlabelled data. To remedy
this, motivated by considering a Dirichlet hyperprior on p(y), they add to the loss the cross entropy
between the true label and qφ(y|x), weighted by a factor α. So the overall objective for model M2
with unlabelled data Du and labelled data D` is the sum of the evidence lower bounds for all data
and this classification loss:

L(Du, D`) =
∑

xu∼Du

L(xu) +
∑

(x`,y`)∼D`

[
L(x`, y`) + α(− log qφ(y`|x`))

]
(2)

2.3 Posterior Collapse

This model has been demonstrated in the semi-supervised case [6], but when there is no label
data at all, when we are just optimising

∑
xu∼Du L(xu), the model can fail to learn an informative

distribution for qφ(y|x) (see similar effect in [7], and this phenomena is well studied for the continuous
latent variable z: [8, 9, 10, 11]). y can either collapse to the prior p(y), or it maps every datapoint
to one class. Either way the model reduces to something very similar to a standard VAE with no y
variable. This happens when the encoder and decoder are high enough in capacity to obtain a locally
optimal value of the evidence lower bound without using the class label. Thus, if one wishes to use
high-capacity neural networks it is necessary to adjust the model in some way.

2.4 Our model - a Gaussian mixture deep generative model

Given M2’s inability to consistently learn y in the semi-unsupervised case, here we propose a change
to the generative structure to ameliorate posterior collapse in y. This is to enable us to learn with
a mixture of semi-supervised and unsupervised classes. Many deep generative models have been
proposed for semi-supervised learning, such as [12, 13] and for unsupervised learning [7, 8, 14],
but none have dealt with posterior collapse in y so as to perform semi-unsupervised learning. We
note that [15] proposes a large model class covering combinations of graphical models with neural
networks parameterising them where inference is done using message passing in some parts of the
model and gradient descent methods for the rest; here we use gradient descent exclusively.
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Figure 1: Representation of our DGM as a probabilistic graphical model, for data x, partially observed
class y, continuous latent z, θ, φ. Figures (a,c) shows the generative model pθ(x|z)pθ(z|y)p(y) with
y latent and observed. Figures (b,d) shows the variational approximate posterior qφ(z, y|x) with y
latent and observed.

We propose a deep generative model: a Gaussian mixture version of a variational auto-encoder,
inspired by Kingma et al.’s M2 [6] and the GMM-VAE [7]. Rather than having the same distribution
p(z) for all classes as in M2, we condition on y to obtain a mixture of gaussians in z space. Our
model, which we call a Gaussian-mixture deep generative model, or GM-DGM, is simpler than the
GMM-VAE, having only one continuous latent variable. We perform semi-unsupervised classification
with this model, and also compare performance with M2. Note that our model can also be trained
unsupervised as well. The generative model for the data is:

pθ(x, y, z) = pθ(x|z)pθ(z|y)p(y) (3)
p(y) = Cat(π) (4)

pθ(z|y) = N (µθ(y), σ2
θ(y)) (5)

pθ(x|z) = N (µθ(z), σ
2
θ(z)) or B(µθ(z)) (6)

We then perform amortised stochastic variational inference, with variational distributions as before
for M2. See Fig. (1) for a graphical representation of our model.

Like M2, the evidence lower bound for the GM-DGM has two forms, one for if the data is labelled
and one if it is not:

L(x, y) = Eqφ(z|x,y)[log
pθ(x|z)pθ(z|y)pθ(y)

qφ(z|x, y)
] (7)

= Eqφ(z|x,y)[log pθ(x|z)]−KL (qφ(z|x, y)||pθ(z|y)) + log pθ(y) (8)

L(x) = Eqφ(z,y|x)[log
pθ(x|z)pθ(z|y)pθ(y)

qφ(z|x, y)qφ(y|x)
] (9)

=
∑
y

qφ(y|x)
[
Eqφ(z|x,y)[log pθ(x|z)]−KL (qφ(z|x, y)||pθ(z|y))

]
−KL (qφ(y|x)||pθ(y))

(10)
and the total objective is as in Eq. (2).

3 Experiments

3.1 Model Implementation and MNIST results

All networks are small MLPs, 2-4 layers with 500 hidden units per layer and RELU activations. z is
100 dimensional. The same network architectures were used for networks with the same inputs and
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outputs. Our code is based on the template code associated with Gordon & Hernandez-Lobato (2017)
[16]. Training was done using Adam [17]. Kernel initialisation was Glorot-Normal and weights were
regularised via a Gaussian prior as in [6]. 2

Here we trained the both the GM-DGM and M2 with digits 0, 1, 2, 8, 9 semi-supervised with 100
labels, and digits 3, 4, 5, 6, 7 entirely unsupervised. We augmented y with 5 extra classes to learn into
in addition to the 5 vacated classes. p(y) was equal to 1/10 for the 5 semi-supervised classes and
1/20 for each of the 10 unsupervised classes.

To be clear, during training we are learning the classes of the digits 3, 4, 5, 6, 7 in an unsupervised
manner within our model, leveraging the latent space z which is jointly learnt with the labelled
data and unlabelled data for digits 0, 1, 2, 8, 9. We do not make use of a single labelled data point
for classes 3, 4, 5, 6, 7 in these experiments at training time. To evaluate our model at test time we
observe which slots in our discrete y space that labelled examples of all classes 0− 9 are classified
into. We attributed the learnt, unsupervised classes to the most common class within it at test time:
i.e. we are performing a ‘cluster-and-label’ procedure. From this we then calculate accuracy. See
Table (1) for overall results for 10 runs and Fig. (2) for the resulting confusion matrices from the best
of 10 runs.
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9
8

7
6

5
4

3
2

1
0

0.002 0.00099 0 0.099 0.0099 0.00099 0.039 0.017 0 0.83

0.001 0.001 0 0.12 0 0.03 0.013 0.001 0.83 0

0 0.00097 0.0078 0.13 0.0049 0.00097 0.0049 0.85 0.000970.00097

0.001 0.0021 0 0.21 0.0021 0.1 0.68 0.001 0 0

0 0 0 0.32 0 0.55 0.13 0.0011 0.0011 0

0 0 0 0.015 0.97 0 0.012 0.002 0 0.0031

0 0 0 0.69 0 0.21 0.098 0.003 0 0.00099

0.00097 0 0.82 0.13 0 0.025 0.018 0 0.0019 0

0 0.97 0.00088 0.013 0.00088 0.0062 0.0044 0 0 0

0.91 0.001 0 0.087 0 0.0041 0 0.0031 0 0
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0.4

0.6

0.8

1.0

(a) M2
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0.000990.00099 0.0099 0.014 0.003 0.0099 0.00099 0.016 0.004 0.94

0 0 0.0021 0 0.001 0.052 0.0021 0.001 0.94 0.0051

0 0 0.0097 0.00097 0 0 0 0.88 0.0019 0.11

0.001 0.0021 0 0 0.0031 0.019 0.97 0 0.0031 0

0.0022 0 0 0.0056 0 0.98 0.0022 0.0011 0.0022 0.0022

0.001 0 0.001 0 0.96 0 0.0031 0.002 0.0031 0.029

0 0 0.011 0.83 0 0.14 0 0.003 0.0089 0.00099

0.0019 0 0.96 0.0048 0.00097 0.0019 0.0019 0.0029 0.014 0.0078

0 0.98 0.0062 0.0044 0.000880.000880.000880.00088 0.0044 0.00088

0.97 0 0.0051 0 0 0.013 0.0061 0.001 0 0.0051
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(b) Our Model

Figure 2: Best of 10 runs confusion matrices for a) M2 - accuracy 0.82 - and b) Our model - 0.94 -
when trained on MNIST with 100 labelled examples each for digits 0, 1, 2, 8, 9 and digits 3, 4, 5, 6, 7
entirely unsupervised.

Model: M2 GM-DGM
Accuracy on semi-supervised classes % (SD) 86.3 (2.2) 93.7 (1.9)

Accuracy on unsupervised classes % (SD) 63.4 (8.3) 87.4 (4.5)
Accuracy overall % (SD) 74.3 (4.4) 90.7 (2.0)

Table 1: Table showing the different performance over 10 runs for semi-unsupervised learning for
both models. Trained on MNIST with 100 labelled examples each for digits 0, 1, 2, 8, 9 and digits 3,
4, 5, 6, 7 entirely unsupervised.

4 Conclusion

We show that our model, the GM-DGM, can perform better than Kingma et al’s M2 [6] in semi-
unsupervised learning on MNIST. y and z can be thought of as separating out class and style
information about data x. Our model, through having a mixture of Gaussians in z space is a suitable
choice of model when different classes in data might have different stylistic information for different
classes. Its generative structure ameliorates optimisation challenges associated with VAEs with a
discrete latent variable. This is work in progress, the next steps are to apply these methods, with more
flexible and powerful parameterisations of the parameters of the distributions, to more advanced data
sets.

2Code accompanying the paper is available at: github.com/MatthewWilletts/GM-DGM.
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