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1 Introduction

Deep variational auto-encoders (VAEs) are latent-variable generative models that define a joint density
p(x, z) between some observed data x ∈ Rdx and unobserved or latent variables z ∈ Rdz . The most
popular method for training these models is through stochastic amortized variational approximations
[1, 2], which use a variational posterior (also referred to as encoder), q(z|x), to construct the evidence
lower-bound (ELBO) objective function.

It has been observed empirically that VAEs with simple posterior models have a tendency to ignore
some of the latent-variables (latent-collapse) [3, 4] and produce blurred reconstructions [4, 5]. As
a result, several mechanisms have been proposed to increase the expressiveness of the variational
posterior density [6, 7, 8, 9, 10, 11, 12, 13, 14] but it still remains a challenge to train complex
encoders due to a combination of optimization and generalization issues [15, 16]. Some of these
issues have been partially addressed in the literature through heuristics, such as hand-crafted annealing
of the KL-term [17, 5, 13], injection of uniform noise to the pixels [18] and reduction of the bit-depth
of the data. A case of interest are VAEs with information bottleneck constraints such as β-VAEs [19].
While a body of work on information bottleneck has primarily focused on tools to analyze models
[20, 21, 22], it has also been shown that VAEs with various information bottleneck constraints can
trade off reconstruction accuracy for better-factorized latent representations [19, 23, 24], a highly
desired property in many real-world applications as well as model analysis. Other types of constraints
have also been used to improve sample quality and reduce latent-collapse [25].

Here, we introduce a practical mechanism for controlling the balance between compression (KL
minimization) and other constraints we wish to enforce in our model (not limited to, but including
reconstruction error) termed Generalized ELBO with Constrained Optimization, GECO. GECO
enables an intuitive, yet principled, work-flow for tuning loss functions. This involves the definition
of a set of constraints, which typically have an explicit relation to the desired model performance,
in constrast to tweaking abstract information-theoretic hyper-parameters which implicitly affect
the model behavior. In spite of its simplicity, our experiments support the view that GECO is an
empowering tool and we argue that it has enabled us to have an unprecedented level of control over
the properties and robustness of complex models such as ConvDraw [13, 17] and VAEs with NVP
posteriors [16].

2 Methods

VAEs are smooth parametric latent variable models of the form p(x, z) = p(x|z)π(z) and are trained
typically by maximizing the ELBO variational objective, F , using a parametric variational posterior
q(z|x),

F = Eρ(x)
[
Eq(z|x) [ln p(x|z)]− KL [q;π]

]
. (1)
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In contrast to ELBO maximization, we consider a constrained optimization problem for variational
auto-encoders where we seek to minimize the KL-divergence, KL [q(z|x);π(z)], under a set of
expectation inequality constraints of the form Eρ(x)q(z|x) [C(x, g(z))] ≤ 0 where C(x, g(z)) ∈ RL.

Lλ = Eρ(x) [KL [q;π]] + λTEρ(x)q(.|x) [C(x, g(.))] . (2)

We refer to this type of constraint as reconstruction constraint since they are based on some compari-
son between a data-point x and its reconstruction. We can solve this problem by using a standard
method of Lagrange multipliers, where we introduce the Lagrange multipliers λ ∈ RL and optimize
the Lagrangian Lλ via a min-max optimization scheme [26].

2.1 The GECO algorithm for VAEs

To derive GECO we start from the augmented Lagrangian defined in Equation (2) for a VAE with
decoder parametrized by a vector θ and an encoder density parametrized by a vector η. Optimization
of the loss involves joint minimization w.r.t. θ and η, and maximization w.r.t. to the Lagrange
multipliers λ. The parameters θ and η are optimized by directly following the negative gradients of
Equation (2). The Lagrange multipliers λ are optimized following a moving average of the constraint
vector C(x, g(z)). In order to avoid backpropagation through the moving averages, we only apply the
gradients to the last step of the moving average. This procedure is detailed in Algorithm 1.

Algorithm 1: GECO. Pseudo-code for joint optimization of VAE parameters and Lagrange multipli-
ers. The update of the Lagrange multipliers is of the form λt ← λt−1 exp(∝ Ct); this to enforce
positivity of λ, a necessary condition [26] for tackling the inequality constraints. The parameter α
controls the slowness of the moving average, which provides an approximation to the expectation of
the constraint.
Result: Learned parameters θ, η and Lagrange multipliers λ
Initialize t = 0;
Initialize λ = 1;
while is training do

Read current data batch x;
Sample from variational posterior z ∼ q(z|x);
Compute the batch average of the constraint Ĉt ← C(xt, g(zt));
if t == 0 then

Initialize the constraint moving average C0
ma ← Ĉ0;

else
Ctma ← αCt−1ma + (1− α)Ĉt;

end
Ct ← Ĉt + StopGradient(Ctma − Ĉt);
Compute gradients Gθ ← ∂Lλ

∂θ and Gη ← ∂Lλ

∂η ;
Update parameters as ∆θ,η ∝ −Gθ,η and Lagrange multiplier(s) ∆log(λ) ∝ Ct;
t← t+ 1;

end

The main advantage of GECO for the machine learning practitioner is that the process of tuning
the loss involves the definition of a set of constraints, which typically have a direct relation to
the desired model performance, and can be set in the model output space. This is clearly a very
different work-flow compared to tweaking abstract hyper-parameters which implicitly affect the
model performance. For example, if we were to work in the β-VAE setting, we would observe this
transition: NLL +βKL =⇒ KL +βREκ, where REκ is the reconstruction error constraint as defined
in Table 1, and κ is a tolerance hyper-parameter. On the lhs β is an hyper parameter tuning the
relative weight of the negative log-likelihood (NLL) and KL terms, affecting model reconstructions
in a non-smooth way by implicitly defining a constraint on the VAE reconstruction error. On the rhs
β is a Lagrange multiplier, whose final value is automatically tuned during optimization as a function
of the κ tolerance hyper-parameter, which the user can define in pixel space explicitly specifying the
required reconstruction performance of the model.

Figure 1 captures a representative example of the typical behavior of GECO: early on in the optimiza-
tion the solver quickly moves the model parameters into a regime of valid solutions, i.e. parameter
configurations satisfying the constraints, and then minimizes ELBO while preserving the validity of
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Figure 1: Trajectory in the information plane induced by GECO during training. This plot
shows a typical trajectory in the NLL/KL plane for a model trained using GECO with a RE constraint,
alongside the corresponding values of the equivalent β and pixel reconstruction errors; note that
iteration information is consistently encoded using color in the three plots. At the beginning of
training, it < 104, the reconstruction constraint dominates optimization, with β < 1 implicitly
amplifying the NLL term in ELBO. When the inequality constraint is met, i.e. the reconstruction
error curve crosses the κ threshold horizontal line, β slowly starts changing, modulated by the moving
average, until at it = 104, the β curve flexes and β starts growing. This specific example is for a
conditional ConvDraw model trained on MNIST-rotate, see Section 4 for details on the dataset.

the current solution. We refer the reader to Figure 1’s caption for a more detailed description of the
optimization phases.

3 Related work

Similarly to [25] we study VAEs with supplementary constraints in addition to the ELBO objective
function and we study its behaviour in the information plane as in [20].

GECO is a simple mechanism for approximately optimizing VAEs under different types of constraint.
It is inspired by the empirical observation that some high-capacity VAEs such as ConvDRAW[13, 17]
may reach much lower reconstruction errors compared to a level that is perceptually distinguishable,
at the expense of a weak compression rate (large KL). GECO is designed to be an easy-to-implement
and tune approximation of more complex stochastic constrained optimization techniques [27, 28]
and to take advantage of the reparametrization trick in VAEs [2, 1]. At a high-level, GECO is
similar to information constraints studied in [20, 29, 30, 31, 32]. However, we argue that in many
practical cases it is much easier to decide on useful constraints in the data-domain, such as a desired
reconstruction accuracy, rather than information constraints. Additionally, the types of information
constraints we can impose on VAEs are restricted to a few combinations of KL-divergences (e.g.
mutual information between latents and data), whereas there are many easily available ways of
meaningfully constraining reconstructions (e.g. bounding reconstruction errors globally, bounding
reconstruction error independently for each dimension, bounding the ability of a classifier to correctly
classify reconstructions or bounding reconstruction errors in some feature space).

Some widespread practices for modelling images such as injecting uniform noise to the pixels and
reducing the bit-depth of the color channels (e.g. [18, 33, 13, 16]) can also be mathematically
interpreted as constraints which bound the values of the likelihood from above. For instance, training
a model with density p(x) by injecting uniform noise to the samples x→ x+bε, ε ∼ unif(−1/2, 1/2)
is a way of maximizing the likelihood under the constraint p(x) ≤ 1

b . With GECO, there is no need
to resort to these heuristics.

The β-coefficient in a β-VAE [19] can be interpreted as the Lagrange multiplier of an inequality con-
straint imposing either a restriction on the value of the KL-term or a constraint on the reconstruction
error [23, 20]. When using the reconstruction error constraint C(x, g(z)) = ‖x − g(z)‖2 − κ2 in
Equation (2), the Lagrange multiplier λ is related to the β from [19] by λ = 1

β .

4 Experiments

We demonstrate empirically that GECO provides an easy and robust way of balancing compression
versus different types of reconstruction. We conduct experiments using standard implementations of
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Figure 2: Information plane analysis of Conditional ConvDraw, ConvDraw and VAE+NVP
with and without RE constraints. Each plot shows the final reconstruction / compression trade-
off achieved during training for the same ConvDraw and VAE+NVP models using ELBO, GECO
and ELBO with a hand annealed β, respectively. For GECO we report results for the following
reconstruction thresholds κ ∈ {0.06, 0.08, 0.1, 0.125, 0.175}, and visually tie them together by
connecting them via a line colour-coded by the dataset instance they refer to. For the hand annealed
β we use the same annealing scheme reported in [17]. Results are shown for a variety of conditional
and unconditional datasets, providing evidence of the consistency of the behavior of GECO across
different domains.

ConvDraw [13] (both in the conditional and unconditional case) and a VAE+NVP model that uses
a convolutional decoder similar to [16] and a fully connected conditional NVP [34] model as the
encoder density so that we can approximate high-capacity encoders.

In Table 1 we show a few examples of reconstruction constraints that we have considered in this
study. To inspect the performance of GECO we look specifically at the behavior of trained models
in the information plane (negative reconstruction likelihood vs KL) on various datasets, with and
without the RE constraint. All models were trained using Adam [35], with learning rate of 1e-5 for
ConvDraw and 1e-6 for the VAE+NVP, and a constraint moving average parameter α = 0.99.

Constraint C(x, g(z))

RE ‖x− g(x)‖2 − κ2
FRE ‖f(x)− f(g(x))‖2 − κ2
CLA l(x)T c(g(z))− κ

pNCC
∑[

κ− ψ(x, i)Tψ(g(x), i)
]

Table 1: Constraints studied in this paper. Pixel Reconstruction Error (RE); Feature Reconstruction
Error (FRE); Classification accuracy (CLA); Patch Normalized Cross-correlation (pNCC). For the
FRE constraint, the features are the first 8 layers of a resnet classifier trained on CIFAR10. For the
CLA constraint, c(x) is a simple convolutional MNIST classifier that outputs class probabilities and
l(x) is the one-hot true label vector of image x. For the pNCC constraint we define the operator
ψ(x, i), which returns a whitened fixed size patch from input image x at location i, and constraint the
dot products of corresponding patches from targets and reconstructions.

Here we look at the behavior of VAE+NVP and ConvDraw (the latter both in the conditional and
unconditional case) in information plane (negative reconstruction likelihood vs KL) on various
datasets, with and without a RE constraint.

The datasets we use for the unconditional case are CelebA[36], Cifar10[37], MNIST[38], Color-
MNIST[39] and a variant of MNIST we will refer to as MNIST-triplets. MNIST-triplets is comprised
of triplets of MNIST digits {(Ii, li)}i=0,1,2 such that l2 = (l0 + l1) mod 10; the model is trained to
capture the joint distribution of the image vectors {(Ii,0, Ii,1, Ii,2)}i.
In the conditional case we use are variants of MNIST we will refer to as MNIST-sum, MNIST-sum-
hard and MNIST-rotate. All variants of the datasets are comprised of contexts and targets derived from
triplets of MNIST digits {(Ii, li)}i=0,1,2, with constraints as follows. For MNIST-sum contexts are
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{(Ii,0, Ii,1)}i and targets are {Ii,2}i, such that l2 = (l0 + l1) mod 10; for MNIST-sum-hard contexts
are {Ii,2}i and targets are {(Ii,0, Ii,1)}i, such that l2 = (l0 + l1) mod 10; finally, for MNIST-rotate
contexts are {(Ii,0, Ii,1)}i and targets are {Îi,2}i, such that l2 = l0 and Î2 is I2 rotated about its
centre by l1 · 30◦, note that whilst I0 and I2 have the same label, they are not the same digit instance.

When we train β-VAEs with different constraints using GECO, it is not obvious how to compare
them in the information plane due to the arbitrary scaling learned by the optimizer. In order to do
a more meaningful comparison after the models have been trained, we recompute an estimate σ̃opt
of the optimal global standard-deviation σopt for all models on the training data (keeping all other
parameters fixed):

σ̃opt ≈ σopt =

√√√√ 1

N

N−1∑
i=0

‖xi − g(zi)‖2 (3)

where and zi ∼ q(z|xi) and N is the size of the training set, and σ̃opt is approximated using a random
subset of 1000 training datapoints. All the NLLs reported in the paper were computed using σ̃opt.
We report all likelihoods per-pixel using the "quantized normal" distribution [16] to make it easier to
compare with other models.

In figure Figure 2 we show in all cases that the NLLs reached by VAE+NVP, ConvDraw and
conditional ConvDraw trained only with the ELBO objective are lower compared to the values
obtained with ELBO + GECO, at the expense of KL-divergences that are some times many orders of
magnitude higher. This result comes from the observation that the numerical values of reconstruction
errors necessary to achieve good reconstructions can be much larger, allowing the model to achieve
lower compression rates. To provide a notion of the quality of the reconstructions when using GECO,
we show in Figure 3 a few model samples and reconstructions for different reconstruction thresholds
and constraints. In Figure 3 we show reconstructions and samples for various levels of reconstruction
targets. As we can see from Figure 3, the use of different constraints has a substantial impact on both
the quality of reconstructions and samples. Importantly, models with comparable reconstruction error
can have dramatically different properties of the latent space as well as sample quality. We quantify
these observations the next section.

(i)ELBO
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(iii)GECO + RE cstr.
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(iii)GECO + FRE cstr.
<latexit sha1_base64="1uoDDV6WswL5Bwo5iIEFy2Kmb3k=">AAACE3icbVDLSgNBEJyNrxhfqx69DAYhKoRdEfQYDFFvRjEPSEKYncwmQ2YfzPSKYdl/8OKvePGgiFcv3vwbJ8keNFrQUFR1093lhIIrsKwvIzM3v7C4lF3OrayurW+Ym1t1FUSSshoNRCCbDlFMcJ/VgINgzVAy4jmCNZxheew37phUPPBvYRSyjkf6Pnc5JaClrnnQBnYPcdx2XFzgnO8nCZ5KF5XyFT7E5zcVTBXIYtI181bRmgD/JXZK8ihFtWt+tnsBjTzmAxVEqZZthdCJiQROBUty7UixkNAh6bOWpj7xmOrEk58SvKeVHnYDqcsHPFF/TsTEU2rkObrTIzBQs95Y/M9rReCedmLuhxEwn04XuZHAEOBxQLjHJaMgRpoQKrm+FdMBkYSCjjGnQ7BnX/5L6kdF2yra18f50lkaRxbtoF1UQDY6QSV0iaqohih6QE/oBb0aj8az8Wa8T1szRjqzjX7B+PgG3r2c2Q==</latexit><latexit sha1_base64="1uoDDV6WswL5Bwo5iIEFy2Kmb3k=">AAACE3icbVDLSgNBEJyNrxhfqx69DAYhKoRdEfQYDFFvRjEPSEKYncwmQ2YfzPSKYdl/8OKvePGgiFcv3vwbJ8keNFrQUFR1093lhIIrsKwvIzM3v7C4lF3OrayurW+Ym1t1FUSSshoNRCCbDlFMcJ/VgINgzVAy4jmCNZxheew37phUPPBvYRSyjkf6Pnc5JaClrnnQBnYPcdx2XFzgnO8nCZ5KF5XyFT7E5zcVTBXIYtI181bRmgD/JXZK8ihFtWt+tnsBjTzmAxVEqZZthdCJiQROBUty7UixkNAh6bOWpj7xmOrEk58SvKeVHnYDqcsHPFF/TsTEU2rkObrTIzBQs95Y/M9rReCedmLuhxEwn04XuZHAEOBxQLjHJaMgRpoQKrm+FdMBkYSCjjGnQ7BnX/5L6kdF2yra18f50lkaRxbtoF1UQDY6QSV0iaqohih6QE/oBb0aj8az8Wa8T1szRjqzjX7B+PgG3r2c2Q==</latexit><latexit sha1_base64="1uoDDV6WswL5Bwo5iIEFy2Kmb3k=">AAACE3icbVDLSgNBEJyNrxhfqx69DAYhKoRdEfQYDFFvRjEPSEKYncwmQ2YfzPSKYdl/8OKvePGgiFcv3vwbJ8keNFrQUFR1093lhIIrsKwvIzM3v7C4lF3OrayurW+Ym1t1FUSSshoNRCCbDlFMcJ/VgINgzVAy4jmCNZxheew37phUPPBvYRSyjkf6Pnc5JaClrnnQBnYPcdx2XFzgnO8nCZ5KF5XyFT7E5zcVTBXIYtI181bRmgD/JXZK8ihFtWt+tnsBjTzmAxVEqZZthdCJiQROBUty7UixkNAh6bOWpj7xmOrEk58SvKeVHnYDqcsHPFF/TsTEU2rkObrTIzBQs95Y/M9rReCedmLuhxEwn04XuZHAEOBxQLjHJaMgRpoQKrm+FdMBkYSCjjGnQ7BnX/5L6kdF2yra18f50lkaRxbtoF1UQDY6QSV0iaqohih6QE/oBb0aj8az8Wa8T1szRjqzjX7B+PgG3r2c2Q==</latexit><latexit sha1_base64="1uoDDV6WswL5Bwo5iIEFy2Kmb3k=">AAACE3icbVDLSgNBEJyNrxhfqx69DAYhKoRdEfQYDFFvRjEPSEKYncwmQ2YfzPSKYdl/8OKvePGgiFcv3vwbJ8keNFrQUFR1093lhIIrsKwvIzM3v7C4lF3OrayurW+Ym1t1FUSSshoNRCCbDlFMcJ/VgINgzVAy4jmCNZxheew37phUPPBvYRSyjkf6Pnc5JaClrnnQBnYPcdx2XFzgnO8nCZ5KF5XyFT7E5zcVTBXIYtI181bRmgD/JXZK8ihFtWt+tnsBjTzmAxVEqZZthdCJiQROBUty7UixkNAh6bOWpj7xmOrEk58SvKeVHnYDqcsHPFF/TsTEU2rkObrTIzBQs95Y/M9rReCedmLuhxEwn04XuZHAEOBxQLjHJaMgRpoQKrm+FdMBkYSCjjGnQ7BnX/5L6kdF2yra18f50lkaRxbtoF1UQDY6QSV0iaqohih6QE/oBb0aj8az8Wa8T1szRjqzjX7B+PgG3r2c2Q==</latexit>

(iv)ELBO
<latexit sha1_base64="y9pxi6X2hbANE3V1jGRcYn5W8AA=">AAACBnicbVDLSgNBEJyNrxhfqx5FGAxCvIRdEfQYIoIHwQjmAdkQZiezyZDZBzO9wbDsyYu/4sWDIl79Bm/+jZNkD5pY0FBUddPd5UaCK7CsbyO3tLyyupZfL2xsbm3vmLt7DRXGkrI6DUUoWy5RTPCA1YGDYK1IMuK7gjXd4eXEb46YVDwM7mEcsY5P+gH3OCWgpa556AB7gCRxXA+X+OgkTfFMubqp3qZds2iVrSnwIrEzUkQZal3zy+mFNPZZAFQQpdq2FUEnIRI4FSwtOLFiEaFD0mdtTQPiM9VJpm+k+FgrPeyFUlcAeKr+nkiIr9TYd3WnT2Cg5r2J+J/XjsG76CQ8iGJgAZ0t8mKBIcSTTHCPS0ZBjDUhVHJ9K6YDIgkFnVxBh2DPv7xIGqdl2yrbd2fFSjWLI48O0BEqIRudowq6RjVURxQ9omf0it6MJ+PFeDc+Zq05I5vZR39gfP4AziWYrQ==</latexit><latexit sha1_base64="y9pxi6X2hbANE3V1jGRcYn5W8AA=">AAACBnicbVDLSgNBEJyNrxhfqx5FGAxCvIRdEfQYIoIHwQjmAdkQZiezyZDZBzO9wbDsyYu/4sWDIl79Bm/+jZNkD5pY0FBUddPd5UaCK7CsbyO3tLyyupZfL2xsbm3vmLt7DRXGkrI6DUUoWy5RTPCA1YGDYK1IMuK7gjXd4eXEb46YVDwM7mEcsY5P+gH3OCWgpa556AB7gCRxXA+X+OgkTfFMubqp3qZds2iVrSnwIrEzUkQZal3zy+mFNPZZAFQQpdq2FUEnIRI4FSwtOLFiEaFD0mdtTQPiM9VJpm+k+FgrPeyFUlcAeKr+nkiIr9TYd3WnT2Cg5r2J+J/XjsG76CQ8iGJgAZ0t8mKBIcSTTHCPS0ZBjDUhVHJ9K6YDIgkFnVxBh2DPv7xIGqdl2yrbd2fFSjWLI48O0BEqIRudowq6RjVURxQ9omf0it6MJ+PFeDc+Zq05I5vZR39gfP4AziWYrQ==</latexit><latexit sha1_base64="y9pxi6X2hbANE3V1jGRcYn5W8AA=">AAACBnicbVDLSgNBEJyNrxhfqx5FGAxCvIRdEfQYIoIHwQjmAdkQZiezyZDZBzO9wbDsyYu/4sWDIl79Bm/+jZNkD5pY0FBUddPd5UaCK7CsbyO3tLyyupZfL2xsbm3vmLt7DRXGkrI6DUUoWy5RTPCA1YGDYK1IMuK7gjXd4eXEb46YVDwM7mEcsY5P+gH3OCWgpa556AB7gCRxXA+X+OgkTfFMubqp3qZds2iVrSnwIrEzUkQZal3zy+mFNPZZAFQQpdq2FUEnIRI4FSwtOLFiEaFD0mdtTQPiM9VJpm+k+FgrPeyFUlcAeKr+nkiIr9TYd3WnT2Cg5r2J+J/XjsG76CQ8iGJgAZ0t8mKBIcSTTHCPS0ZBjDUhVHJ9K6YDIgkFnVxBh2DPv7xIGqdl2yrbd2fFSjWLI48O0BEqIRudowq6RjVURxQ9omf0it6MJ+PFeDc+Zq05I5vZR39gfP4AziWYrQ==</latexit><latexit sha1_base64="y9pxi6X2hbANE3V1jGRcYn5W8AA=">AAACBnicbVDLSgNBEJyNrxhfqx5FGAxCvIRdEfQYIoIHwQjmAdkQZiezyZDZBzO9wbDsyYu/4sWDIl79Bm/+jZNkD5pY0FBUddPd5UaCK7CsbyO3tLyyupZfL2xsbm3vmLt7DRXGkrI6DUUoWy5RTPCA1YGDYK1IMuK7gjXd4eXEb46YVDwM7mEcsY5P+gH3OCWgpa556AB7gCRxXA+X+OgkTfFMubqp3qZds2iVrSnwIrEzUkQZal3zy+mFNPZZAFQQpdq2FUEnIRI4FSwtOLFiEaFD0mdtTQPiM9VJpm+k+FgrPeyFUlcAeKr+nkiIr9TYd3WnT2Cg5r2J+J/XjsG76CQ8iGJgAZ0t8mKBIcSTTHCPS0ZBjDUhVHJ9K6YDIgkFnVxBh2DPv7xIGqdl2yrbd2fFSjWLI48O0BEqIRudowq6RjVURxQ9omf0it6MJ+PFeDc+Zq05I5vZR39gfP4AziWYrQ==</latexit>

(v)GECO + RE cstr.
<latexit sha1_base64="Q+pCn1NLM5uKVuWmcXd81nADJUw=">AAACEHicbVDLSgNBEJyNrxhfqx69DAYxIoRdEfQYDEFvRjEPSEKYncwmQ2YfzPQGw7Kf4MVf8eJBEa8evfk3TpI9aLSgoajqprvLCQVXYFlfRmZhcWl5JbuaW1vf2Nwyt3fqKogkZTUaiEA2HaKY4D6rAQfBmqFkxHMEazjD8sRvjJhUPPDvYByyjkf6Pnc5JaClrnnYBnYPcdx2XFwYHSUJngmXlfI1Psa3FUwVyGLSNfNW0ZoC/yV2SvIoRbVrfrZ7AY085gMVRKmWbYXQiYkETgVLcu1IsZDQIemzlqY+8ZjqxNOHEnyglR52A6nLBzxVf07ExFNq7Dm60yMwUPPeRPzPa0Xgnndi7ocRMJ/OFrmRwBDgSTq4xyWjIMaaECq5vhXTAZGEgs4wp0Ow51/+S+onRdsq2jen+dJFGkcW7aF9VEA2OkMldIWqqIYoekBP6AW9Go/Gs/FmvM9aM0Y6s4t+wfj4Bq4hm7A=</latexit><latexit sha1_base64="Q+pCn1NLM5uKVuWmcXd81nADJUw=">AAACEHicbVDLSgNBEJyNrxhfqx69DAYxIoRdEfQYDEFvRjEPSEKYncwmQ2YfzPQGw7Kf4MVf8eJBEa8evfk3TpI9aLSgoajqprvLCQVXYFlfRmZhcWl5JbuaW1vf2Nwyt3fqKogkZTUaiEA2HaKY4D6rAQfBmqFkxHMEazjD8sRvjJhUPPDvYByyjkf6Pnc5JaClrnnYBnYPcdx2XFwYHSUJngmXlfI1Psa3FUwVyGLSNfNW0ZoC/yV2SvIoRbVrfrZ7AY085gMVRKmWbYXQiYkETgVLcu1IsZDQIemzlqY+8ZjqxNOHEnyglR52A6nLBzxVf07ExFNq7Dm60yMwUPPeRPzPa0Xgnndi7ocRMJ/OFrmRwBDgSTq4xyWjIMaaECq5vhXTAZGEgs4wp0Ow51/+S+onRdsq2jen+dJFGkcW7aF9VEA2OkMldIWqqIYoekBP6AW9Go/Gs/FmvM9aM0Y6s4t+wfj4Bq4hm7A=</latexit><latexit sha1_base64="Q+pCn1NLM5uKVuWmcXd81nADJUw=">AAACEHicbVDLSgNBEJyNrxhfqx69DAYxIoRdEfQYDEFvRjEPSEKYncwmQ2YfzPQGw7Kf4MVf8eJBEa8evfk3TpI9aLSgoajqprvLCQVXYFlfRmZhcWl5JbuaW1vf2Nwyt3fqKogkZTUaiEA2HaKY4D6rAQfBmqFkxHMEazjD8sRvjJhUPPDvYByyjkf6Pnc5JaClrnnYBnYPcdx2XFwYHSUJngmXlfI1Psa3FUwVyGLSNfNW0ZoC/yV2SvIoRbVrfrZ7AY085gMVRKmWbYXQiYkETgVLcu1IsZDQIemzlqY+8ZjqxNOHEnyglR52A6nLBzxVf07ExFNq7Dm60yMwUPPeRPzPa0Xgnndi7ocRMJ/OFrmRwBDgSTq4xyWjIMaaECq5vhXTAZGEgs4wp0Ow51/+S+onRdsq2jen+dJFGkcW7aF9VEA2OkMldIWqqIYoekBP6AW9Go/Gs/FmvM9aM0Y6s4t+wfj4Bq4hm7A=</latexit><latexit sha1_base64="Q+pCn1NLM5uKVuWmcXd81nADJUw=">AAACEHicbVDLSgNBEJyNrxhfqx69DAYxIoRdEfQYDEFvRjEPSEKYncwmQ2YfzPQGw7Kf4MVf8eJBEa8evfk3TpI9aLSgoajqprvLCQVXYFlfRmZhcWl5JbuaW1vf2Nwyt3fqKogkZTUaiEA2HaKY4D6rAQfBmqFkxHMEazjD8sRvjJhUPPDvYByyjkf6Pnc5JaClrnnYBnYPcdx2XFwYHSUJngmXlfI1Psa3FUwVyGLSNfNW0ZoC/yV2SvIoRbVrfrZ7AY085gMVRKmWbYXQiYkETgVLcu1IsZDQIemzlqY+8ZjqxNOHEnyglR52A6nLBzxVf07ExFNq7Dm60yMwUPPeRPzPa0Xgnndi7ocRMJ/OFrmRwBDgSTq4xyWjIMaaECq5vhXTAZGEgs4wp0Ow51/+S+onRdsq2jen+dJFGkcW7aF9VEA2OkMldIWqqIYoekBP6AW9Go/Gs/FmvM9aM0Y6s4t+wfj4Bq4hm7A=</latexit>

Figure 3: Samples and reconstructions from ConvDraw trained on CelebA and Color-MNIST.
In each block of samples, rows correspond to samples from the data, model reconstructions and model
samples respectively. From left to right we have models trained with: (i) ELBO only. (ii) ELBO +
GECO+RE constraint with κ = 0.1. (iii) ELBO + GECO+FRE constraint with κ = 1.0. (iv) ELBO
only. (v) ELBO + GECO+RE constraint with κ = 0.06. More samples available in Appendix A.

4.1 Average and Marginal KL analysis

At a fixed reconstruction error, a computationally cheap indicator of the quality of the learned
encoder is the average KL between prior and posterior, 1

n

∑
i KL [q(z|xi);π(z)], which we analyze

in Figure 4. Our analysis shows that an expressive model can achieve lower average KL at a given
reconstruction error when trained with GECO compared to the same model trained with ELBO.

The optimal solutions for VAE’s encoders are inference models that cover the latent space so that their
marginal is equal to the prior. That is, q(z) = 1

n

∑
i q(z|xi) = π(z). We refer to the KL between

q(z) and π(z) as "marginal KL".

If the learned encoder or inference network fails to cover the latent space, it may result in the "holes"
problem which, in turn, is associated with bad sample quality.

In contrast to the average KL, the marginal KL is also sensitive to the "holes problem" discussed in
Section 1. In Table 2 we evaluate the effect of GECO on the marginal KL of the VAE+NVP models
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Figure 4: GECO results in lower average KL at fixed reconstruction error compared to ELBO.
We first trained an expressive ConvDRAW model on CIFAR10 using the standard ELBO objective
until convergence and recorded its reconstruction error (MSE=0.00029). At this reconstruction error
values, the reconstructions are visually perfect. We then trained the same model architecture using
GECO with a RE constraint setup to achieve the same reconstruction error. The curves for the
model trained with ELBO (green) and with GECO (blue) demonstrate that we can achieve the same
reconstruction error but with a lower average KL between prior and posterior.

Marginal KL
Dataset ELBO GECO
Cifar10 725.2 45.3

Color-MNIST 182.5 10.3

Table 2: Marginal KL comparison for a VAE+NVP model on Cifar10 and Color-MNIST.

trained in Section 4 (in a limited number of combinations due to the significant computational costs)
and observe that models trained with GECO also have much lower marginal KL while maintaining
an acceptable reconstruction accuracy.

5 Discussion

We have introduced GECO, a simple-to-use algorithm for constrained optimization of VAEs. Our
experiments indicate that it is a highly effective tool to achieve a good balance between reconstructions
and compression in practice (without recurring to large parameter sweeps) in a broad variety of tasks.
We also provided a quantitative analysis, demonstrating that GECO reduces the "holes problem"
when training expressive latent-variable models.
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Appendix A Model and Data Samples

(a) (b) (c) (d) (e) (f) (g)

Figure 5: Samples from ConvDraw trained on CelebA. From left to right we have models trained
with: (a) Data; (b) ELBO only; (c) ELBO + Hand crafted β ∈ [2.0, 0.7] annealing; (e) GECO+RE
constraint with κ = 0.06; (d) GECO+RE constraint with κ = 0.08; (f) GECO+RE constraint with
κ = 0.1; (g) GECO+FRE constraint with κ = 0.0625.

9



(a) (b) (c) (d) (e) (f)

Figure 6: Samples from ConvDraw trained on Color-MNIST. From left to right we have models
trained with: (a) Data; (b) ELBO only; (c) ELBO + Hand crafted β ∈ [2.0, 0.7] annealing; (e)
GECO+RE constraint with κ = 0.06; (d) GECO+RE constraint with κ = 0.08; (f) GECO+RE
constraint with κ = 0.1.
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(a) (b) (c) (d) (e) (f) (g)

Figure 7: Samples from ConvDraw trained on CIFAR10. From left to right we have models
trained with: (a) Data; (b) ELBO only; (c) ELBO + Hand crafted β ∈ [2.0, 0.7] annealing; (d)
GECO+RE constraint with κ = 0.06; (e) GECO+RE constraint with κ = 0.0028; (f) GECO+FRE
constraint with κ = 0.0625; (g) GECO+pNCC constraint.

11


	Introduction
	Methods
	The GECO algorithm for VAEs

	Related work
	Experiments
	Average and Marginal KL analysis

	Discussion
	Model and Data Samples

