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1 Introduction and related work

We present a detailed theoretical analysis of the behaviour of high-capacity 5-VAEs [[1]], advancing
our understanding of VAEs on multiple fronts: (i) We demonstrate that the posterior density of
unconstrained VAEs will converge to an equiprobable partition of the latent-space; (ii) We provide
a connection between [3-VAEs and spectral clustering; (iii) Drawing from statistical mechanics we
study phase-transitions in the reconstruction fixed-points of 3-VAEs.

Our analysis extends the analysis performed in [2, [3]] with an emphasis on the properties of the
learned posterior densities in high-capacity VAEs. Our analysis also extends the idea of information
bottleneck and geometrical clustering from [4]] to the case where latent variables are continuous instead
of discrete. A further extension of the analysis including the incorporation of Lipschitz constraints is
also available in Appendix [B} Complementary to the analysis from [5] with (semi-)affine assumptions
on the VAE’s decoder, we focus on non-linear aspects of high-capacity constrained VAEs. To obtain a
tractable representation of both the posterior density and decoder for Proposition 2] and Proposition 4}
we express them in a particular functional basis that is analogous to using a mixture posterior density
as in [6]] but where the modes of the mixture have non-overlapping supports. This assumption
substantially simplify our analysis, allowing us to reach meaningful conclusions.

The remainder of the paper is structured as follows: in Section [2.1] we study the behavior of
unconstrained VAEs at convergence; in Section[2.2]we draw links between 3-VAEs, spectral clustering
and statistical mechanic.

2 Analysis

We consider 8-VAEs [1]] of the form p(x,z) = p(x|z)n(z) that are trained by maximizing the
modified variational objective JF, using a parametric variational posterior ¢(z|x),

F = Ep) [Eqap Inp(x|2)] — BKL[g; 7] , )

where (3 is a positive scaling factor used to trade-off reconstruction error and compression rates and
m(z) = N(0,1). The empirical data density is represented as p(x) = - 3" §(x — x;), where x; are
individual data-points.

We focus on VAEs with Gaussian decoder density of the form p(x|z) = N(x|g(z), 0%I), where o is
a global parameter and g(z) is referred to as a decoder or generator. Restricting to decoder densities
where the components x; of x are conditionally independent given a latent vector z eliminates a
family of solutions in the infinite-capacity limit where the decoder density p(x|z) ignores the latent
variables, i.e. p(x|z) = p(x) & p(x), as observed in [3]. This restriction is important because in this
work we are interested in the behaviour of the latent variables.
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Proposition 1. (Fixed-point equations) The extrema of the modified ELBO F with respect to the
decoder g(z) and encoder q(z|x) are solutions of the fixed-point Equations (2)) and
Ix—g' " (=)112

q¢'(z|x) x w(z)e” 257 2)

g'(z) = Z wi(z)x; 3)

where wt(z) = %. The proof is sketched in Appendix
In the following Sections [2.1]and 2.2] we analyze properties of Equations (2) and (3] constraints to
gain a better understanding of the behaviour of VAEs. In Appendix [B] we also provide additional
analysis of the effect of local and global Lipschitz constraints.

2.1 Unconstrained VAEs

In the unconstrained case, where we optimize the ELBO (8 = 1), we can derive a few interesting
conclusions from Equations and : (i) The global optimal decoder g(z) is a convex linear
combination of the training data of the form g(z) = ", w;(z)x;; (ii) If we optimize the standard-
deviation ¢ jointly with the decoder and encoder, it will converge to zero; (iii) The posterior density
q(z|x) will converge to a distribution with support corresponding to one element of a partition of
the latent space. Moreover, the set of supports of the posterior density formed by each data-point
constitutes a partition of the latent space that is equiprobable under the prior. These results are
illustrated in Figure[T(left) and Figure[2] and formalized in Proposition 2} where we demonstrate that
a solution satisfying all these properties is a fixed point of Equations (2) and (3).

posterior MSE ||dMSE / dz||

Figure 1: Example of latent space tiling induced by the model posterior. Visualization of prop-
erties of the tiling of the latent space induced by the posterior of a VAE with a Normal prior, NVP
[7]] encoder and 2 dimensional latent space, trained on a subset of MNIST comprising 4 exemplars
per digit label. Left: Scatter plot of the posterior showing 100 z samples per exemplar, color-coded
based on the exemplar id; labels are also overlaid to help identify the corresponding data classes.
The posterior density ¢(z|x) partitions the latent space into tiles, equiprobable under the prior, each
corresponding to one data point in the training set; refer to Proposition 2| for details. Centre, Right:
Maps of mean-squared error (MSE) and norm of gradient of MSE w.r.z. z. For each z we first
decode the latent, then identify the nearest neighbor (NN) in the training set, and finally compute
the MSE and its gradient using the NN as target. The reconstruction error is approximately constant
within a tile, and tile boundaries are aligned with regions of the latent space characterized by high
reconstruction error gradient variance, caused by blurred reconstructions; refer to Proposition [3] for
details.

Proposition 2. (High-capacity VAEs learn an equiprobable partition of the latent space): Let
q(z|x;) = w(z2)laecq, /7, where m; = B, [l,eq,| is a normalization constant, be the variational
posterior density, evaluated at a training point x;. This density is equal to the restriction of the
prior 7(z) to a limited support Q; C R% in the latent space. q(z|x;) is a fixed-point of equations
Equations @) and @) for any set of volumes §2; that forms a partition of the latent space. Furthermore,
the highest ELBO is achieved when the partition is equiprobable under the prior. That is, B [I,cq,] =
E; []Izer] =1/n, R%: = U;Q; and Q; N Qj = D if i # j. The proof is sketched in Appendix



The fact that the standard deviation will converge to 0 results in a numerically ill-posed problem as
observed in [8]]. Nevertheless, the fixed-point equations still admits a stationary solution where the
VAE becomes a mixture of Dirac-delta densities centered at the training data-points.

It is known empirically that low-capacity VAEs tend to produce blurred reconstructions and samples
[2, [1]]. Contrary to a popularly held belief (e.g. [9]), this phenomenon is not caused by using a
Gaussian likelihood alone: as observed in [2]], this is primarily caused by a sub-optimal variational
posterior. The fixed-point equation (3)) provides a mathematical explanation for this phenomenon,
generalizing the result from [2]): the optimal decoder g(z) for a given encoder ¢(z|x) is a convex
linear combination of the training data. If the VAE’s encoder cannot accurately distinguish between
multiple training data-points, the resulting weights w;(z) in the VAE’s decoder will be spread across
the same data-points, resulting in a blurred reconstruction. This is formalized in Proposition [3]and
empirically illustrated in Figure [T(middle).

Figure 2: Illustration of the 'blurred
reconstructions'" and the '"holes"
problems. Left: Latent space with a
posterior with support in a tiling {2;},
where each tile (2; represents the sup-
port of the posterior for the data-point
» z;. Right: Data space. In the region
of the latent space where the posteri-
ors of the data-points x; and x5 overlap,
Q1 N 5, the optimal reconstruction Z is
a weighted average of the corresponding
data-points, resulting in a blurred sam-
ple. In a region of low density under the
¥n marginal posterior, a "hole" (represented
by the black area in the figure), the opti-
mal reconstructions from these regions
T are unconstrained by the ELBO objec-
tive function.

Latent Space Data Space

Proposition 3. (Blurred reconstructions) If the supports Q; from Proposition[2]are overlapping (i.e.
Q; N Q; # O fori # j), then the optimal reconstruction at a latent point z for a fixed encoder
q(z|z;) = 7(z)l cq, /m; will be the average of all data-points mapping to any of the overlapping
basis weighted by the inverse prior probability of the respective basis. See proof in Appendix[C.3|

Another striking conclusion we can derive from PropositionsT|and 3]s that the support of the optimal
decoder as a function of the latent vector will be concentrated in the support of the marginal posterior.
In fact, if we revisit the proof of Proposition [I]in Appendix [C.T|when there are regions in the latent
space where ¢(z|x) = 0 we notice that the decoder is completely unconstrained by the ELBO in these
regions. We refer to this as the "holes problem" in VAEs. This problem is commonly encountered
when using simple Gaussian posteriors (e.g. [10]).

2.2 High-capacity 5-VAEs and spectral methods

The -coefficient in a 3-VAE [[1]] can be interpreted as the Lagrange multiplier of an inequality con-
straint imposing either a restriction on the value of the KL-term or a constraint on the reconstruction
error [11, 3]. When using the reconstruction error constraint C(x, g(z)) = ||x — g(z)|* — x? in
Equation (E), the Lagrange multiplier A is related to the /5 from [1] by A = %

While VAEs with simple linear decoders can be related to a form of robust PCA, [3]], we demonstrate a
relation between 3-VAEs with high-capacity decoders and kernel methods such as spectral clustering.
More precisely, we show in Proposition [ that the fixed-point equations of a high-capacity decoder
expressed in a particular orthogonal basis are analogous to the reconstruction fixed point equations
used in spectral clustering.

In the literature of spectral clustering and kernel PCA it is known that reconstructions based on a
Gaussian Gram matrix may suffer phase-transitions (sudden change in eigen-values or reconstruction
fixed-points) as a function of the scale parameter [[12} 13| 14,15, [16]]. Making a bridge between VAEs
and these methods allows us to investigate phase-transitions in high-capacity 8-VAEs, where the
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Figure 3: Effect of 5 on the reconstruction fixed-points and phase-transitions. Top images Grey
curves indicate the trajectories of the vectors 1. Red points are the fixed-points. Blue points are
the data points; Bottom left Expected reconstruction error as a function of /3. Vertical grey lines
indicate the detected critical-temperatures 3¥; Bottom right Expected second-order derivative of the
reconstruction error as a function of 3. At critical temperatures reconstruction fixed-points will merge
with each other, resulting in sudden changes in the slope of the reconstruction error with respect to
the temperature /3, these points correspond to spikes in the second-order derivatives. For analysis,
we sorted the local maxima according to their height and restricted the analysis to the top-3 points,
Br=1.2:3_ Details of this simulation are explained in Appendix

expected reconstruction error is treated as an order parameter u(3) = E [||x — g(z)||?]. In this case,
phase transitions will occur at critical temperature points ., which can be detected by analyzing

2
regions of high-curvature (high absolute second-order derivative | 9 81;(/36 ) ). As in spectral clustering,

(B-VAE:s phase transitions correspond to the merging of neighboring data-clusters at different spatial
scales. This is illustrated in the experiment shown in Figure 3] where we look at the merging of
reconstruction fixed-points as we increase 5. Interestingly, the phase-transitions that we observe
are similar to what is known as first-order phase transitions in statistical mechanics [[17]], but further
analysis is necessary to clarify this connection.

Proposition 4. (High-capacity B-VAE and spectral methods) Let ¢, : R% — {0,1} be an orthog-
onal basis in the latent space. If we express the posterior density and generator using this basis
respectively as q(z|z;) = 7(2z) Y., Miada(z) and g(z) = Y ¢(z), where m;, is a matrix with
positive entries satisfying the constraint ), Mo Tq = 1 where T, = Er(,)[da(2)]. The fixed-point
equations that maximize the ELBO with respect to 1) are convergent under the appropriate initial
conditions and are equivalent to computing the pre-images (reconstructions) of a Kernel-PCA model
with a normalized Gaussian Kernel with scale parameter /. The proof is sketched in Appendix

In statistical mechanics there is an important result, known as equipartition of energy theorem. It states
that, for a system in thermodynamic equilibrium, energy is shared equally amongst all accessible
degrees of freedom at a fixed energy level, [18]. We demonstrate that a similar theorem holds for
VAE:s in Proposition [} In Proposition [2] we have seen that the optimal posterior for each data point in
a high-capacity VAE has its support in the elements of a partition of the latent space and that this
partition is equiprobable under the prior. We can generalize this result to 5-VAEs by noticing that, as
a result of the existence of reconstruction fixed points from Proposition{] there will be regions in
the latent space where the Hamiltonian H (x, z) is approximately constant for a given x. At these
regions, the posterior will be proportional to the prior and they will work as a discrete partition of the
latent space, as in Proposition 2] The concept that VAE encoders learn a tiling of the latent space,
each tile corresponding to a different level of the function H (x,z), can be a guiding principle to
evaluate generative models as well as to construct more meaningful constraints.

Proposition 5. (Equipartition of Energy for high-capacity VAEs). Let H (X, z) be the "Hamiltonian"
function from Proposition[I|for a VAE trained in a dataset with n data-points. For a given data-point



x € R, latent point z € R% and precision € > 0, let Q(x,20) = {Z'||H(x,2") — H(x,20)| <
€} C R, That is, )(x,z¢) is the set of latent points where the Hamiltonian is approximately
constant. As we vary x and z, each set )(x, zq) will be one element of a discrete set of disjoint sets,
which we enumerate as §),. The encoder density q(z|x;) will converge to a mixture of the restrictions
of the prior to the basis elements ),. Moreover, the probability -y, of a sample from the prior falling
in the partition element (), is a solution of Zz eif,ib = n where H;q is the value of H(x;,2)
E )

for z € Q. The proof is sketched in Appendix

3 Discussion

We have provided a detailed theoretical analysis of the behavior of high-capacity VAEs and variants
of 5-VAEs. We have made connections between VAEs, spectral clustering methods and statistical
mechanics (phase transitions). Our analysis provides novel insights to the two most common problems
with VAEs: blurred reconstructions/samples, and the "holes problem".
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Appendix A Reconstruction fixed-points experiment details

To produce the results in Figure 3| we iterated the fixed-point equations for the matrix v* using

exponential smoothing with o = 0.9. For each experiment, we iterated the smoothed fixed-point

equations until either the number of iterations exceeded 400 steps or the Euclidean distance between

two successive steps became smaller than le-3. The basis functions ¢;(z) were arranged as a 32x32
11

grid in a compact latent space z € [—3, 5], the prior was chosen to be uniform, 7(z) = 1. The

matrix ¢ was initialized at the center-points of the grid tiles with small uniform noise in [—0.1, 0.1].

Appendix B High-capacity 5-VAEs and Lipschitz constraints

The analysis of high-capacity VAEs in Sections[2.T|and [2.2]reveal interesting aspects of VAEs near
convergence, but the type of solutions implied by Propositions [2]and [l may seem unrealistic for VAEs
with smooth decoders parametrized by deep neural networks. For instance, the solutions of the fixed
point-equations from Propositions [2[and {4{ have no notion that the outputs of the decoder g(z) and
g(2z") for two similar latent vectors z and z’ should also be similar. That is, these solutions are not
sensitive to the metric and topological properties of the latent space. This implies that, if we want to
work in a more realistic high-capacity regime, we must further constrain the solutions so that they
have at least a continuous limit as we grow the number of basis functions to infinity.

A sufficient condition for a function g(z) to be continuous, is that it is a locally-Lipschitz function of
z [[19]. Thus, to bring our analysis closer to more realistic VAESs, we consider high-capacity 3-VAEs
with an extra L-Lipschitz inequality constraint C in the decoder function ¢g(z). The new term that we
add to the augmented Lagrangian, with a functional Lagrange multiplier €2(z,z") > 0 is given by

Clgl = / dzdz'(2)7(2) 2z, 2) [|l9(2) - 9(@)|” — L]z — 2/|]”] . )

By expressing g(z) and €(z,z’) in the functional basis ¢(z) of Proposition[4] g(z) = >_, ¢Ya¢a(z)
and Q(z,2') =5, , Qupda(z)dp(2), we can rewrite the constraint term as a quadratic inequality
constraint in the matrix 1,

1 A 2
C[g] = 5 Z;Qab [Cab”wa - wb” - 1] ) (%)
where O, = L2K.,(y; are new Lagrange multipliers, Cpy = mamy/(L2Kap) and Ko =

[ dzdz' ¢ (z)¢p(Z")||z—2’||*. The matrices C,p, and K, embed the metric and topological properties
of the latent space but are otherwise independent of the rest of the model.

The constraint (@) can be used to enforce both global and local Lipschitz constraints by controlling the
size of the support of the Lagrange multiplier function Q(z, z’). If (z,2z') = 0 for |z — 2’| >=r,
we will be constraining the decoder function to be locally Lipschitz within a radius 7 in the latent
space.

Note that the Lipschitz constraint is not a reconstruction constraint as it only constrains the VAE’s
decoder at arbitrary points in the latent space. For this reason, it can be implemented as a projection
step just after the iteration from Equation (I5)). This is formalized in Proposition[6] We illustrate the
combined effect of 3, local and global Lipschitz constraints on VAEs in Figure

Proposition 6. The Lipschitz constraint from Equation @ can be incorporated to the fixed-point
Equation as a projection of the form 't = F (') P!, where F is the transition operator
without Lipschitz constraints. See proof in Appendix|C.6]

Appendix C Proofs

C.1 Derivation of Proposition 1]

Proof. We can obtain these equations by taking the functional derivatives 53(}; 3> % of F with re-

spect to g(z) and ¢(z|x) respectively and re-arranging the terms of the equations

oq(z[x)
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Figure 4: Combined effect of 5-VAEs and Lipschitz constraints. Blue points are data-points for a
mixture of lines (left) and a mixture of circles (right). Grey curves indicate the trajectories of the
reconstruction vectors ¢ from initial conditions on an uniform 2D grid. Red points are the found fixed-
points. Top row Reconstruction fixed-points without Lipschitz constraints. An increase in (3 factor
causes the reconstruction fixed-points to collapse, effectively clustering the data at different spatial
resolutions; Middle row Reconstruction fixed-points with local Lipschitz constraints (r = 0.2). As
we increase the strength of local Lipschitz constraints, the fixed-points tend organize in thin manifolds
connecting regions of high density. Bottom row Reconstruction fixed-points with global Lipschitz
constraints. As we increase the strength of global Lipschitz constraints (r = 1.0), the fixed-points
tend organize in manifolds covering regions of high density.

0. For the density ¢(z|x) we must also take the normalization constraint | dxdz\(x)(g(z|x) — 1)
into account:

OF 1
5@ ~ o2 (Epxo la(2|%)x] — E ) la(2[x)] 9(2)) =0,
_ By la(zx)x] .
:ig”*'ﬁwmmm1‘§)“”% ©
SF —g(@)|?
B —%—A(x) N OTE
= q(z|x) =7(z)e 20 xm(z)e 2t @)
where w!(z) = 72‘1 éz(‘;‘fij) O

C.2 Derivation of Proposition 2]

Proof. First, we note that for any given ¢(z|x), the ELBO is a convex quadratic functional of the
decoder ¢g(z) and, for a fixed g(z), it is a convex functional of the encoder ¢(z|z). Second, for a
fixed partition €2;, replacing the solution ¢'(z|z;) = 7(z)l.cq, /T, where m; = E, [[,cq,], in the
fixed-point equations, results in itself. That is,

_d'(zlz)

wi(z) = = Leo, ®
Z q'(zx;)
= sz z)x; = inﬂzegi 9)
oﬁf¢mwwwmmx—¢@m%:o (10)
llzi—g® )12 "(2) Y, lzi o H2]I
- o2 e 202 2€Q
¢ (alz;) = lim mee 7 _ lim, .

7 olxi) T A m(2) e 2 Leq,

(1)



Therefore, ¢'(z|z;) = 7(z)l.cq,/m; is a fixed-point in the family of densities constrained by
the partition £2;. We observe that the negative ELBO reduces to the expected KL term only,

Ep[KL(g;7)] =+ > dz%jenf(— Inm)=-1 >_jInm;. We can now optimize the partition

to further maximize the ELBO. This results in m; = 1/n. That is, the tiles 2; must be equiprobable.
At this point, we have E, [KL(g; 7)] = Inn. O

C.3 Derivation of Proposition

Proof. From (3) we have that g(z) = Y, wi(z)x; = Y ;x; ZQ(:(E\L:Z ;- Substituting ¢(z|z;) =

m(z),eq,/m; we have,

|x1 Lea/m 1/m;
% == S —— 12
ZX S aabo) 2N Ly~ 2 Ny 0D

]IZEQ / Uy ilzeQ,
where m; = E; [Icq,]- O

C.4 Derivation of Proposition

Proof. The expression for the generator can be obtained by substitution and algebraic simplification
using the fact that ¢, form an orthogonal basis and that ¢,(z) € {0,1}:

|X7, mza(ba m4p T
Z K D @ 2 5 iy 7% = w0, (13

b m_]b¢b

with ¢, = >, Zmni —X;. Similarly, we can compute the fixed point equations for 1), by substitution
j I
on equations () and (@),

R
t+1 € 27 t+1
¢(z2) =7(2) Y ————du(2) :w(z)me a(2) (14)
b €
- wbuz
23
t+1 €Ts
t+1 _ Zx My 2t o (15)
b 12 mt+1 - le;—wiI
i J " ogb Z e 2P
i ot
\Iri—ngQ _ M ;g’é”z
where ¢; = Zb 2 and m“rl epit If the initial reconstruction vectors z/)f are in

the convex-hull of the training data-points, then equatlons (T3)) will map them to another set of points
1 in the convex-hull of the training data. Since, these equations are also smooth with respect to
1), they are guaranteed to converge as a consequence of the fixed-point theorem [20]. Importantly,
equation (I5) corresponds to the fixed point iterations for computing the pre-image (reconstructions)
of Kernel-PCA but using a normalized Gaussian kernel. O

C.5 Derivation of Proposition 5|

Proof. From Proposition[d] we have seen that the reconstruction vectors ¢, of a high-capacity 3-VAE
will converge to a set of m fixed-points. This means that ¢ will map the set basis-functions to a
smaller subset of points. As a consequence, all the latent-vectors falling in the support of these basis
elements will also map to the same reconstruction and for a fixed x, the function H (x, z) will only
have m possible distinct values, which we can enumerate as H;,. If we enumerate all distinct supports
Hiq

- e

as (2, then from Equation li we have that ¢;(z) = w(z) > —= I.cq, - Replacing g;(z) in

a _Hyy
b€ B
_H i
Equation (1) and maximizing with respect to -y, results in the condition ) ), —*—¢-— =n. [
B
b€ Yo



C.6 Derivation of Proposition [6]

Proof. We first write the relevant terms of the augmented Lagrangian £y ¢ in the basis ¢(z) from
Proposition 4}

Ix — " é(2)

Lxo=E,x) [Eq(ZX) [ 202

2 1 ~
)l H o0 3 0 [Carllga — el ~1] +est (16)
a,b

||x 1 ~
=Epx) [ g(zlx) [¢a(2 202 + o > Qap [Caplltha = ulI* = 1] +est (17
a,b

”Xz 77[}a|| 1 2
= Z MiqTa 20_2 % - Cawau - wb” + cst, (18)
where cst are terms that do not depend on 1) for a fixed q. Solving — MA £ = () with respect to 1)

results in

0L o Ta Z Miq o2 -
Q2 _ [ QurC. - =0 @19
awa Z Z 7Ta Zl Min Zb: ab ab(wa ¢b) ( )
Z Xigw = Fur. (20)
where P = [Hfdiag(%)(diag(lT(Q@C)) QOO0 O
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