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Abstract

We study the Automatic Relevance Determination procedure applied to deep
neural networks. We show that ARD applied to Bayesian DNNs with Gaussian
approximate posterior distributions leads to a variational bound similar to that of
variational dropout, and in the case of a fixed dropout rate, objectives are exactly the
same. Experimental results show that the two approaches yield comparable results
in practice even when the dropout rates are trained. This leads to an alternative
Bayesian interpretation of dropout and mitigates some of the theoretical issues that
arise with the use of improper priors in the variational dropout model. Additionally,
we explore the use of the hierarchical priors in ARD and show that it helps achieve
higher sparsity for the same accuracy.

1 Introduction

Dropout [1] is a popular regularization method for neural networks that can be interpreted as a form
of approximate Bayesian inference [2, 3]. Sparse variational dropout (Sparse VD) [6] further extends
this approach and shows that it can be used to significantly prune neural networks. However, it was
recently argued [7] that the use of an improper prior distribution in current formulations of variational
dropout leads to an improper posterior, and as such, this model cannot be used to provide a principled
interpretation of the empirical behavior of the dropout procedure. In this paper, we use variational
inference to perform automatic relevance determination procedure [4, 5] to arrive at an alternative
interpretation of dropout that does not have such a drawback. The derived objective is remarkably
similar to the approximation in Sparse VD and empirical observations confirm that the two models
are effectively equivalent.

2 Variational Automatic Relevance Determination for neural networks

Let D = (xi, yi)
N
i=1 be a dataset of N samples where xi are observable variables and yi are the

targets. Suppose that we have some parametric model p(D|w) =
∏N
i=1 p(yi|xi, w), w ∈ RD (e.g. a

deep neural network) mapping x to the corresponding y using parameters w. The parameters w have
a prior distribution p(w|τ) which is itself parameterized by hyperparameters τ ∈ RH . Following the
Bayesian approach, we wish to find the posterior distribution p(w|D, τ) = p(D|w)p(w|τ)/p(D|τ).
We choose hyperparameters τ such that the marginal likelihood (evidence) of the dataset is maximized:

τ∗ = arg max
τ

p(D|τ) = arg max
τ

∫
p(D|w)p(w|τ) dw.

This is the empirical Bayes (EB) approach to hyperparameter selection. In particular, when p(w|τ) =∏D
i=1N (wi | 0, τ−1

i ), this procedure is called automatic relevance determination (ARD) [4, 5].

Since in the case of deep neural networks the marginal likelihood is intractable, we use doubly
stochastic variational inference (DSVI) [9] to find an approximate posterior q(w|φ) from some
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parametric family. This is achieved by maximizing the evidence lower bound (ELBO) w.r.t. variational
parameters φ and hyperparameters τ :

log p(D|τ) ≥ L(φ, τ) = Eq(w|φ) [log p(D|w)]−DKL(q(w|φ) || p(w|τ))→ max
φ,τ

.

Now suppose that p(w|τ) =
∏D
i=1N (wi|0, τ−1

i ) (ARD prior) and q(w|µ, σ) =
∏D
i=1N (wi|µi, σ2

i ).
The optimal value for hyperparameters τ in this case can be found analytically [9]: τ∗i = (µ2

i +σ2
i )−1.

The ELBO then takes the following form [9]:

LARD(µ, σ) =

N∑
i=1

Eq(w|µ,σ) [log p(yi|xi, w)]− 1

2

D∑
j=1

log

(
1 +

µ2
j

σ2
j

)
(1)

= LD(µ, σ) +RARD(µ, σ)→ max
µ,σ

.

In practice, we estimate the gradients of the ELBO w.r.t. the variational parameters using the local
reparameterization trick [2]. The objective (1) was first derived in the context of linear models [9].

3 Connection with variational dropout

Variational dropout (VD) [2] is a generalization of Gaussian dropout which interprets it as an
approximate Bayesian inference procedure. It puts an improper scale-invariant log-uniform prior on
the weights of a neural network with fully-connected and convolutional layers and uses a factorized
Gaussian approximation to the true posterior.

Let us now consider a restricted variational approximation q(w|µ) =
∏D
i=1N (wi |µi, αµ2

i ) for some
constant α > 0 in the ARD objective (1). The regularizer term is now constant and does not affect
optimization, so the objective takes the form:

L̃ARD(µ) = LD(µ) =

N∑
i=1

Eq(w|µ) [log p(yi|xi, w)]→ max
µ

. (2)

It can be shown [2] that optimizing such functional is equivalent to training a neural network with
Gaussian dropout which puts multiplicative normal noise N (1, α) on the input of each dense and
convolutional layer in the net, while ignoring the dependencies between the output units of the layer.
Note that unlike variational dropout [2], we did not have to use an improper prior to arrive at this
objective.

We can assign individual dropout rates to each weight in the network and optimize with respect to
them. Such an approach [6] leads to very sparse solutions where most of the weights of a network
are assigned high dropout rates, thus effectively being pruned from the network. To tune individual
dropout rates in the ARD model, we set q(w|µ, α) =

∏D
i=1N (wi |µi, αiµ2

i ) which yields the
following objective (ARD Dropout):

LARD(µ, α) = LD(µ, α)− 1

2

D∑
j=1

log(1 + α−1
j )→ max

µ,α
. (3)

Compare this to the approximation for the Sparse VD objective [6]:

LSV DO(µ, α) ≈ LD(µ, α) +

D∑
j=1

[
k1σ(k2 + k3 logαj)−

1

2
log(1 + α−1

j ) + C

]
→ max

µ,α
, (4)

where k1 = 0.63576, k2 = 1.87320, k3 = 1.48695, C = −k1. As we can see, both (3) and
(4) have the same log terms in the regularizer and the sigmoid term in LSV DO(µ, α) is bounded.
It is also easy to show that Sparse VD objective is actually a lower bound on the ARD objective.
Furthermore, when αj → ∞, LSV DO(µ, α) approaches LARD(µ, α) from below. The common
term in the objectives is the one that encourages sparsity, so we expect that ARD would perform
similarly to Sparse VD in terms of compression rate. In Table 1, we report accuracy and compression
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Objective Error % Compression

MNIST (LeNet-5)
Sparse VD 0.81 (±0.04) 136 (±8)
ARD Dropout 0.76 (±0.09) 132 (±13)

CIFAR-10 (VGG-like)
Sparse VD 8.08 (±0.27) 38 (±1)
ARD Dropout 7.75 (±0.28) 34 (±1)

Table 1: Empirical comparison of ARD and sparse
variational dropout. Compression is defined as the
total number of weights in the network divided by
the number of non-zero weights after trimming.

a Error % Compression

CIFAR-10 (VGG-like)
0.505 7.46 (±0.24) 52 (±1)
0.510 7.65 (±0.25) 85 (±1)
0.515 7.88 (±0.13) 114 (±1)
0.520 7.94 (±0.18) 136 (±2)

Table 2: Classification error and compression for
Gamma hyperprior MAP-II model, where b = 10−8.

for networks trained with ARD and Sparse VD objectives (see Appendix A for details). As we can
see, both models show comparable sparsity while maintaining low classification error rate.

The proposed ARD dropout interpretation mitigates one of the issues described in Hron et al. (2018)
[7]. The paper identifies two problems with variational dropout: (a) the use of improper prior
distribution and (b) singularity of the approximate posterior distribution. Now that we do not use the
log-uniform prior anymore, our ARD dropout model is defined correctly, and both the prior and the
true posterior distributions for each value of τ are now proper, which fixes (a), and (b) is only present
in the model with correlated weight noise which is not the case for the ARD model.

4 Accuracy-compression trade-off using Gamma hyperprior

We can go further and introduce a hyperprior over hyperparameters τ and then perform maximum
a posteriori estimation for them. Suppose that p(τi|a, b) = Gamma(τi|a, b). If we maximize the
evidence w.r.t. τ in such model (so-called MAP-II estimation), it leads to the following objective
when a > 1/2, b > 0 (see Appendix B for details):

LΓ(µ, σ) = LD(µ, σ) +

D∑
j=1

[
1

2
log

σ2
j

(σ2
j + µ2

j + 2b)2a−1
+ C

]
→ max

µ,σ
,

where C = 1 − a + a log b − log Γ(a) + 1
2 (2a − 1) log(2a − 1), and Γ is the gamma function.

Unlike ARD or Sparse VD models, we now have tunable parameters a, b of the hyperprior. With
a = 1, b = 0 (which gives an improper prior) and ignoring the constant term, we get the usual ARD
objective. Smaller values of a (around 0.5) reduce pruning without rescaling the regularizer term,
which is a common way to prevent underfitting [11, 12]. Moreover, this approach helps achieve
higher values of sparsity for the same accuracy level. See Table 2 for empirical results for different
values of a.

Interestingly, if we approach this model in a fully Bayesian way and marginalize the hyperparameters
out, we obtain the marginal prior p(w) distributed according to the generalized Student t-distribution
p(wi) = Student(ν = 2a, µ = 0, λ = a/b). In particular, the log-uniform prior used in Sparse VD
can be considered a limiting case of this model when a = b→ 0. See Appendix C for details.

5 Conclusion

We have shown that it is possible to overcome the theoretical difficulties with variational dropout
using a variational approximation to the ARD procedure with fully factorized Gaussian variational
posterior distributions. It does not require the use of improper priors and leads to a similar variational
lower bound, and thus can be seen as an alternative to variational dropout. Our theoretical study
is supported by experimental results that show that in practice, both methods achieve comparably
high values of sparsity without a significant drop in classification accuracy. Additionally, such an
approach allows applying a hierarchical prior to the hyperparameters, which gives an option to trade
off between accuracy and sparsity.
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A Experimental setting

We compare ARD dropout with Sparse VD [6]. We train LeNet-5-Caffe1 and VGG-like2 networks on
MNIST and CIFAR-10 correspondingly. To reduce the variance of the gradient, we use the additive
parameterization [6], training means and logarithms of standard deviations. We train both networks
from the same random initialization (with log σ initialized from N (−5, 0.12)) for 200 epochs using
Adam optimizer with the initial learning rate 10−3 and minibatch size 100. Starting from epoch
100, we linearly reduce the learning rate to zero. To overcome underfitting, for VGG on CIFAR-10,
we scale the regularizer terms in both objectives by 0.05, and for both networks, we anneal the
regularizer term over 20 epochs. For Gamma hyperprior experiments, posterior variances are clipped
so that log σ < −4 and the regularizer term is not scaled. After training, we evaluate the networks
in “deterministic mode”: we set the network weights to the means of their approximate posterior
distribution. We then trim the weights of the networks setting those with |µi| < 10−2 to zero. We
report the mean and the standard deviation for sparsity and error over 5 random seeds.

1https://github.com/BVLC/caffe/blob/master/examples/mnist/lenet.prototxt
2http://torch.ch/blog/2015/07/30/cifar.html
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B MAP-II Estimation with Gamma Hyperprior

We can introduce a prior distribution over the inverse variance τ :

p(y, w, τ |x) = p(y|x,w)p(w|τ)p(τ),

where p(τ) =
∏
i Gamma(τi|a, b), and p(wi|τi) = N (wi | 0, τ−1

i ). Then, we perform maximum a
posteriori estimation for the hyperparameters of the prior over the weights. The objective takes the
form:

L(µ, σ, τ) = Ldata(µ, σ) + log p(τ)−DKL(q(w|µ, σ) || p(w|τ))→ max
τ,µ,σ

. (5)

The KL term is the same as for the regular ARD:

DKL(q(wi|µi, σi) || p(wi|τi)) = −1

2
+
τi(σ

2
i + µ2

i )

2
− log(τiσ

2
i )

2
.

The regularizer:
log p(τi) = a log b− log Γ(a) + (a− 1) log τi − bτi.

Differentiating (5) with respect to τi and equating to zero, we get the optimal value of τi which exists
when a > 1

2 :

τ∗i =
2a− 1

σ2
i + µ2

i + 2b
.

Substituting back, we get the following regularizer for a single weight:

R(µi, σi) =
1

2
log

σ2
i

(σ2
i + µ2

i + 2b)2a−1
+ C,

where
C = 1− a+ a log b− log Γ(a) +

1

2
(2a− 1) log(2a− 1).

C Full Bayes with Gamma Hyperprior

Instead of a MAP estimation, we can go full Bayes and marginalize over hyperparameters:

p(wi) =

∫
p(wi | τi)p(τi) dτi =

∫
N (wi | 0, τ−1

i ) ·Gamma(τi | a, b) dτi.

It is a well-known fact that such Gaussian scale mixture gives a generalized Student t-distribution:

p(wi) = Student(ν = 2a, µ = 0, λ = a/b).

Setting a = b = ξ and taking limit as ξ approaches 0 from above, we get a log-uniform distribution:

p(log |wi|) ∝ C,

which is exactly the prior for variational dropout.
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