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Abstract

Variational Inference is a power tool in a Bayesian toolkit, however its effectiveness
is determined by expressivity of family of variational distributions in their ability to
match the true posterior distribution. However, using more expressive variational
distributions is limited by the requirement of tractable density. To overcome this
roadblock we introduce a new family of variational upper bounds on marginal log
density in the case of latent variable models. This allows us to upper bound KL
divergence and derive a family of increasingly tight variational lower bounds on the
otherwise intractable standard Evidence Lower Bound for Hierarchical Variational
Models, enabling the use of more expressive approximate posteriors. We show
that previously known methods like HVM, SIVI and DSIVI can be seen as special
cases of the proposed approach.

1 Introduction

Bayesian Inference is an important statistical tool. However, exact inference is possible only in a
small class of conjugate problems, and for many practically interesting cases one has to resort to
Approximate Inference techniques. Variational Inference (Wainwright et al. [2008]) being one of
them is an efficient and scalable approach that gained a lot of interest in recent years due to advances
in Neural Networks.

However, efficiency and accuracy of Variational Inference heavily depend on how close the approx-
imate posterior is to the true posterior. As a result there is a lot of interest in leveraging Neural
Networks’ universal approximation abilities to generate powerful posterior approximates, however a
major obstacle in this direction is a need for tractable density q(z), which is not available in a closed
form for arbitrary generators. Existing approaches to this problem fall into roughly three classes: a)
approximate log-density / ratios of densities, b) augment q(z) with some invertible and expressive
transformation that keeps the density tractable, c) overcome the need for computation of the marginal
density q(z), e.g. by means of bounds. We will discuss these approaches in greater detail in section 2.

In this paper we propose a novel method that can be seen as a generalization of Hierarchical Variational
Models, Semi-Implicit Variational Inference and Doubly Semi-Implicit Variational Inference. The
method provides a family of tighter bounds on the marginal log-likelihood log p(x) in the case of
Hierarchical Variational Model q(z | x) =

∫
q(z | ψ, x)q(ψ | x)dψ, which any semi-implicit model

could be transformed into. Finally, our method can be combined with a multisample bound of Burda
et al. [2015] to further tighten the marginal log-likelihood estimate.
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2 Related Work

More expressive variational distributions have been under active investigation for a while. One
possible approach is to augment some standard q(z) while keeping the density tractable using copulas
(Tran et al. [2015]), mixtures (Guo et al. [2016]), invertible transformations with tractable Jacobians
also known as normalizing flows (Rezende and Mohamed [2015], Kingma et al. [2016]). Flow-based
models have demonstrated some success (Kingma and Dhariwal [2018]), but the requirement for
invertability might lead to an inefficiency in parameters usage. Alternative direction is to embrace
implicit distributions (ones we can only sample from), and overcome the need for tractable density by
means of bounds or estimates (Huszár [2017]). Methods based on estimates (Mescheder et al. [2017],
Shi et al. [2017]) (for example, via Density Ratio Estimation trick) typically estimate the densities
indirectly, introducing bias, which prevents one from using such models during evaluation. Moreover
such methods tend to hide dependency of the density q(z) on variational parameters, hence biasing
the optimization procedure.

Ranganath et al. [2016] proposed Hierarchical Variational Models and introduced a lower bound
on (possibly differential) entropy of intractable marginal density q(z) in hierarchical model q(z) =∫
q(z | ψ)q(ψ)dψ, giving an upper bound for the KL-divergence in hierarchical case. Yin and Zhou

[2018] introduced Semi-Implicit Variational Inference for hierarchical models with implicit q(ψ)
and suggested a multisample ELBO surrogate to be used in optimization. Molchanov et al. [2018]
have shown that the proposed surrogate is actually a lower bound on ELBO, and effectively gives
a novel lower bound on entropy of the marginal q(z). Titsias and Ruiz [2018] have shown that in
gradient-based ELBO optimization in case of a hierarchical model with tractable qφ(z | ψ) and
qφ(ψ) one does not need the marginal log density log qφ(z) per se, only the its gradient which can
be estimated using MCMC. However this approach is incompatible with multisample objectives of
Burda et al. [2015], Nowozin [2018] since the gradient of these objectives depends on the value of
the marginal log-density.

3 Background

Having a Latent Variable Model pθ(x, z) = pθ(x | z)pθ(z) for observable objects x, we’re interested
in two tasks: inference and learning. The problem of (bayesian) inference consists in finding the
true posterior pθ(z | x), which is often intractable, and thus is approximated by some qφ(z | x).
The problem of learning is that of finding parameters θ s.t. the marginal model distribution pθ(x)
approximates the true data-generating process of x as good as possible.

Variational Inference provides a way to solve both tasks simultaneously by lower-bounding the
intractable marginal log-likelihood log pθ(x) using the Evidence Lower Bound (ELBO):

log pθ(x) ≥ E
qφ(z|x)

log
pθ(x, z)

qφ(z | x)

The bound requires analytically tractable density for both qφ(z | x) and pθ(z). The gap between
the marginal log-likelihood and the bound is equal to DKL(qφ(z | x) || pθ(z | x)), which can be
reduced by using a better posterior approximation. Burda et al. [2015] proposed a family of tighter
bounds, generalizing the ELBO:

log pθ(x) ≥ E
qφ(z1:M |x)

log
1

M

M∑
m=1

pθ(x, zm)

qφ(zm | x)

Domke and Sheldon [2018] have shown that this bound essentially corresponds to using a more
powerful approximate posterior obtained using self-normalized importance sampling. However, the
price of this expressivity is higher computation complexity, and thus we might want to come up with
a more expressive posterior approximation. Ranganath et al. [2016] proposed to use a hierarchical
variational model (HVM) for q(z) =

∫
q(z | ψ)q(ψ)dψ and to overcome the intractability of the

density q(z) via a lower bound
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log pθ(x) ≥ E
qφ(z,ψ|x)

log
pθ(x, z)
qφ(z,ψ|x)
τ(ψ|x,z)

Recently Yin and Zhou [2018] also proposed to use a hierarchical model q(z) =
∫
qφ(z | ψ)qφ(ψ)dψ

with possibly implicit (but reparametrizable) q(ψ), but explicit qφ(z | ψ), and provided the following
objective, which was shown to be a lower bound (SIVI bound) by Molchanov et al. [2018]:

log pθ(x) ≥ E
qφ(z,ψ0|x)

E
qφ(ψ1:K |x)

log
pθ(x, z)

1
K+1

∑K
k=0 qφ(z | ψk, x)

An important observation that we’ll make use of is that many hierarhical models with implicit and
reparametrizable mixing distribution qφ(ψ | x) can be equivalently reformulated as a mixture of
two explicit distributions: due to reparametrizability of qφ(ψ | x) we have ψ = g(ε | φ, x) for
some ε ∼ qφ(ε) with tractable density. We can then consider an equivalent hierarchical model
qφ(z) =

∫
qφ(z | g(ε | φ, x), x)qφ(ε)dε that first transforms ε into ψ and then generates samples

from qφ(z | ψ, x).
In the next section we derive a general variational upper bound on the marginal log density log q(z),
and show that both HVM and SIVI can be derived as a special cases of a more general lower bound
on marginal log-likelihood log pθ(x).

4 Importance Weighted Hierarchical Variational Inference

Having intractable log qφ(z) as a source of our problems, we seek a tractable and efficient bound,
which is provided by the following theorem
Theorem (Marginal log density upper bound). For any q(z, ψ), K ∈ N0 and τ+(ψ | z) (under some
regularity conditions) consider the following

UK+
= E
q(ψ0|z)

E
τ+(ψ1:K |z)

log

(
1

K + 1

K∑
k=0

q(z, ψk)

τ+(ψk | z)

)
where we write τ+(ψ1:K | z) =

∏K
k=1 τ+(ψk | z) for brevity. Then the following holds:

1. UK ≥ log q(z)

2. UK ≥ UK+1

3. limM→∞ UM = log q(z)

We can further combine the proposed bound with the standard Importance Weighted lower bound of
Burda et al. [2015] on marginal log density to obtain a family of sandwich bounds for KL divergence
in case of both q(z) and p(z) being different (maybe structuraly) hierarchical models (we use the
same K for both bound on q(z) and p(z) to simplify notation, but keep in mind they might be
different):

DKL(q(z) || p(z))) ≥ E
q(z)

[
E

τ−(ψ1:K |z)
log

(
1

K

K∑
k=1

q(z, ψk)

τ−(ψk | z)

)

− E
p(ζ0|z)ρ+(ζ1:K |z)

log

(
1

K + 1

K∑
k=1

p(z, ζk)

ρ+(ζk | z)

)]
(1)

DKL(q(z) || p(z))) ≤ E
q(z,ψ0)

[
E

τ+(ψ1:K |z)
log

(
1

K + 1

K∑
k=0

q(z, ψk)

τ+(ψk | z)

)

− E
ρ−(ζ1:K |z)

log

(
1

K

K∑
k=1

p(z, ζk)

ρ−(ζk | z)

)]
(2)
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The proposed bound lets us give a lower bound on ELBO for models with latent variable model
q(z | x) and p(z), leading to Importance Weighted Hierarchical Variational Inference (IWHVI):

log p(x) ≥ E
q(z|x)

log
p(x, z)

q(z | x)
= E
q(z|x)

[log p(x | z) + log p(z)− log q(z | x)]

≥ E
q(ψ0|x)

E
q(z|x,ψ0)

[
log p(x | z)− E

τ+(ψ1:K |z,x)
log

(
1

K + 1

K∑
k=0

q(z, ψk | x)
τ+(ψk | z, x)

)

+ E
ρ−(ζ1:K |z)

log

(
1

K

K∑
k=1

p(z, ζk)

ρ−(ζk | z)

)]
(3)

This bound introduces two additional variational distributions ρ and τ that are learned by maximizing
the bound w.r.t. their parameters, tightening the bound. While the optimal distributions are τ(ψ |
z) = q(ψ | z) and ρ(ζ | z) = p(ζ | z), one can see that for some choices of these distributions the
bound leads to previously known methods. In particular:

• For arbitrary K, τ+(ψ | z, x) = q(ψ | x) and ρ−(ζ | z) = p(ζ) we recover DSIVI bound
(Molchanov et al. [2018])

log p(x) ≥ E
q(z,ψ0|x)

E
q(ψ1:K |x)

E
p(ζ1:K)

log
p(x | z) 1

K

∑K
k=1 p(z | ζk)

1
K+1

∑K
k=0 q(z | ψk, x)

• For arbitrary K, τ+(ψ | z, x) = q(ψ | x) and explicit prior p(z) we recover SIVI bound
(Yin and Zhou [2018])

log p(x) ≥ E
q(z,ψ0|x)

E
q(ψ1:K |x)

log
p(x, z)

1
K+1

∑K
k=0 q(z | ψk, x)

• For K = 0, arbitrary τ+(ψ | z, x) and explicit prior p(z) we recover HVM bound (Ran-
ganath et al. [2016])

log p(x) ≥ E
q(z,ψ0|x)

log
p(x, z)
q(z,ψ0|x)
τ+(ψ0|z,x)

• For arbitrary K, factorized inference and prior models qφ(z, ψ | x) = qφ(z | x)qφ(ψ | x),
pθ(z, ζ) = pθ(z)pθ(ζ), optimal τ+(ψ | z, x) = qφ(ψ | x) and ρ−(ζ | z) = pθ(ζ) we
recover the standard ELBO

log p(x) ≥ E
q(z|x)

log
p(x, z)

qφ(z | x)

Moreover, we tighten the bound (3) further in a way similar to Burda et al. [2015] (Theorem A.4),
leading to Doubly Importance Weighted Hierarchical Variational Inference (DIWHVI).

log p(x) ≥ E

log 1

M

M∑
m=1

p(x | zm) 1
K

∑K
k=1

p(zm,ζm,k)
ρ−(ζm,k|zm)

1
K+1

∑K
k=0

q(zm,ψm,k|x)
τ+(ψm,k|zm,x)

 (4)

Where the expectation is taken over the following generative process:

1. Sample ψm,0 ∼ q(ψ | x) for 1 ≤ m ≤M
2. Sample zm ∼ q(z | xn, ψm,0) for 1 ≤ m ≤M
3. Sample ψm,k ∼ τ+(ψ | zm, x) for 1 ≤ m ≤M and 1 ≤ k ≤ K
4. Sample ζm,k ∼ ρ−(ζ | zm) for 1 ≤ m ≤M and 1 ≤ k ≤ K

The downside of this tighter bound is increased sampling complexity: it requires M(1 +K) samples
of ψ and MK samples of ζ. However, as has been shown in Yin and Zhou [2018] when τ+(ψ |
z, x) = τ+(ψ | x) and ρ−(ζ | z) = ρ−(ζ) (independent of z, but not necessarily equal to the prior),
it’s possible to reuse samples ψm,1:K and ζm,1:K for different m at the expense of a looser bound
and possibly higher variance, thus bringing sample complexity down to M + 2K.
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Figure 1: Negative entropy bound for 50-dimensional
Laplace distribution. Shaded area denotes 90 % confidence
interval

Method test log-likelihood
DIWHVI -92.67
IWHVI -93.41
SIVI-IW -93.16
SIVI -93.86
UIVI -94.09

Table 1: log-likelihood on static bi-
narization on MNIST

5 Experiments

5.1 Toy Experiment

As a toy experiment we consider 50-dimensional factorized standard Laplace distribution q(z) as a
hierarchical scale-mixture model:

q(z) =

50∏
d=1

Laplace(zd | 0, 1) =
∫ 50∏

d=1

N (zd | 0, ψd)Exp(ψd | 12 )dψ1:50

We do not make use of factorized join distribution p(z, ψ) to explore bound’s behaviour in high
dimensions. We use the proposed bound from Theorem A.1 and compare it to SIVI (Yin and Zhou
[2018]) on the task of upper-bounding the negative differential entropy Eq(z) log q(z). For IWHVI
we take τ+(ψ | z) to be a Gamma distribution whose concentration and rate are generated by a neural
network with 3 500-dimensional hidden layers from z. We initialize the network at prior, namely, we
also add a sigmoid "gate" output with large initial negative bias and use the gate to combine prior
concentration and rate with those generated by the network. This way we’re guaranteed to perform
no worse than SIVI even at a randomly initialized τ+. Figure 1 shows the value of the bound for
different number of optimization steps over τ parameters, minimizing the bound. The whole process
(including random initialization of neural networks) was repeated 50 times to compute empirical 90%
confidence intervals.

5.2 Variational Autoencoder

For VAE we follow Titsias and Ruiz [2018] setup: we use single stochastic layer with p(z) =
N (z | 0, I) prior, decoder pθ(x | z) = Bernoulli(x | πθ(z)) where πθ is a neural network
with two hidden 200-neurons layers, and latent variable model encoder qφ(z | x) =

∫
N (z |

µφ(x, ψ), σ
2
φ(x, ψ))N (ψ | 0, 1)dψ where µφ(x, ψ) and σ2

φ(x, ψ) are outputs of a neural network
with two hidden 200-neurons layers. We take τϑ(ψ | z, x) = N (ψ | νϑ(x, z), ς2ϑ(x, z)) where mean
and variance are outputs of another neural network with two hidden 200-neurons layers. We take
z, ψ ∈ R10, and evaluate the VAE on the problem of generative modeling in terms of marginal
log-likelihood on the MNIST dataset (Salakhutdinov and Murray [2008]).

We used the proposed bound eq. (4) with analytically tractable prior p(z) = N (z | 0, 1) with
increasing number K: we used K = 1 for first 250 epochs, K = 5 for next 250 epochs, and K = 20
for the rest 500 epochs. For DIWHVI and SIVI-IW we used the same schedule for the number of
IWAE samples M , while for other methods we always used just 1 sample of z per x.
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To estimate the marginal log-likelihood in a way comparable to prior work, we use the following
lower 1 bound for M = 1000, K = 500 2. Results are shown in table 1.

log p(xn) ≥ log
1

M

M∑
m=1

p(xn, zn,m)
1

K+1

∑K
k=0 q(zn,m | ψτn,m,k | xn)

(5)

6 Conclusion

We presented a variational upper bound on marginal log density, which allowed us to upper bound
DKL(q(x) || p(x)) for the case of latent variable model q(z) in addition to prior works that only
provided upper bounds for the case of latent variable model p(z). We applied it to lower bound the
intractable ELBO with a tractable one for the case of latent variable model approximate posterior
q(z | x). We combined the resulting bound with IWAE-like lower bound, which led to a tighter
bound of the marginal log-likelihood. Proposed variational inference method allows the use of much
more expressive approximate posterior, which will be useful for many variational models.
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A Proofs

Theorem A.1 (Marginal log-density upper bound). For any p(z, ψ), K+ ∈ N0 and τ+(ψ | z)
consider the following holds

UK+
= E
p(ψ0|z)

E
τ+(ψ1:K+

|z)
log

 1

K+ + 1

K+∑
k=0

p(z, ψk)

τ+(ψk | z)


where we write τ+(ψ1:K+ | z) =

∏K+

k=1 τ+(ψk | z) for brevity. Then the following holds:

1. UK+
≥ log p(z)

2. UK+ ≥ UK++1

3. limM→∞ UM = log p(z) if Eτ+(ψ|z)
p(z,ψ)
τ+(ψ|z) <∞

Proof. 1. Consider a gap between the proposed bound at the marginal log density:

Gap = E
p(ψ0|z)

E
τ+(ψ1:K+

|z)
log

 1

K+ + 1

K+∑
k=0

p(z, ψk)

τ+(ψk | z)

− log p(z)

= E
p(ψ0|z)

E
τ+(ψ1:K+

|z)
log

 1

K+ + 1

K+∑
k=0

p(ψk | z)
τ+(ψk | z)


= E
p(ψ0|z)

E
τ+(ψ1:K+

|z)
log

(
p(ψ0 | z)τ+(ψ1:K+

| z)
ω(ψ0:K+

| z)

)
= DKL(p(ψ0 | z)τ+(ψ1:K+

| z) || ω(ψ0:K+
| z)) ≥ 0

Where the last line holds due to ω being a normalized density function (see Lemma A.2):

ω(ψ0:K+ | z) =
p(ψ0 | z)τ+(ψ1:K+

| z)
1

K++1

∑K+

k=0
p(ψk|z)
τ+(ψk|z)

2. Now we will prove the second claim.

UK+
− UK++1 = Ep(ψ0|z)Eτ+(ψ1:K++1|z) log

1
K++1

∑K+

k=0
p(z,ψk)
τ+(ψk|z)

1
K++2

∑K++1
k=0

p(z,ψk)
τ+(ψk|z)

= Ep(ψ0|z)Eτ+(ψ1:K++1|z) log
p(ψ0 | z)τ+(ψ1:K++1 | z)

ν(ψ0:K++1 | z)
= DKL

(
p(ψ0 | z)τ+(ψ1:K++1 | z) || ν(ψ0:K++1 | z)

)
≥ 0

Where we used the fact that ντ+(ψ0:K++1 | z) is normalized density due to Lemma A.3

ντ+(ψ0:K++1 | z) = ω(ψ0:K+ | z)τ+(ψK++1 | z)
1

K+ + 2

K++1∑
k=0

p(ψk | z)
τ+(ψk | z)

3. For the last claim we follow Burda et al. [2015]. Consider

MK+
=

1

K+ + 1

K+∑
k=0

p(z, ψk)

τ+(ψk | z)
=

AK+︷ ︸︸ ︷
1

K+ + 1

p(z, ψ0)

τ+(ψ0 | z)
+

BK+︷ ︸︸ ︷
K+

K+ + 1

XK+︷ ︸︸ ︷
1

K+

K+∑
k=1

p(z, ψk)

τ+(ψk | z)
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We have

AK+

a.s.−−−−−→
K+→∞

0, XK+

a.s.−−−−−→
K+→∞

E
τ+(ψ|z)

p(z, ψ)

τ+(ψ | z)
= p(z), BK+

a.s.−−−−−→
K+→∞

1

Thus

MK+

a.s.−−−−−→
K+→∞

p(z), UK+
= E
τ+(ψ0:K+

|z)
logMK+

−−−−−→
K+→∞

log p(z)

Lemma A.2 (ω distribution, following Domke and Sheldon [2018]). Given z, consider a following
generative process:

• Sample K + 1 i.i.d. samples from ψ̂k ∼ τ(ψ | z)

• For each sample compute its weight wk = p(ψ̂k,z)

τ(ψ̂k|z)

• Sample h ∼ Cat
(

w0∑K
k=0 wk

, . . . , wK∑K
k=0 wk

)
• Put h-th sample first, and then the rest: ψ0 = ψ̂h, ψ1:K = ψ̂\h

Then the marginal density of ψ0:K

ωτ (ψ0:K | z) =
p(ψ0 | z)τ(ψ1:K | z)

1
K+1

∑K
k=0

p(ψk|z)
τ(ψk|z)

Proof. The joint density for the generative process described above is

ωτ (ψ̂0:K , h, ψ0:K | z) = τ(ψ̂0:K | z) wh∑K
k=0 wk

δ(ψ0 − ψ̂h)δ(ψ1:K − ψ̂\h)

One can see that this is indeed a normalized density∫ K∑
h=0

(∫
ωτ (ψ̂0:K , h, ψ0:K | z)dψ0:K

)
dψ̂0:K =

∫ K∑
h=0

τ(ψ̂0:K | z) wh∑K
k=0 wk

dψ̂0:K

=

∫
τ(ψ̂0:K | z)

K∑
h=0

wh∑K
k=0 wk

dψ̂0:K =

∫
τ(ψ̂0:K | z)dψ̂0:K = 1

The marginal density ωτ (ψ0:K | z) then is

ωτ (ψ0:K | z) =
∫ K∑

h=0

τ(ψ̂0:K | z) wh∑K
k=0 wk

δ(ψ0 − ψ̂h)δ(ψ1:K − ψ̂\h)dψ̂0:K

= (K + 1)

∫
τ(ψ̂0:K | z) w0∑K

k=0 wk
δ(ψ0 − ψ̂0)δ(ψ1:K − ψ̂1:K)dψ̂0:K

=

∫
τ(ψ̂1:K | z) p(z,ψ̂0)

1
K+1

∑K
k=0 wk

δ(ψ0 − ψ̂0)δ(ψ1:K − ψ̂1:K)dψ̂0:K

= τ(ψ1:K | z) p(z,ψ0)

1
K+1

∑K
k=0

p(ψk,z)
τ(ψk|z)

= p(ψ0|z)τ(ψ1:K |z)
1

K+1
∑K
k=0

p(ψk|z)
τ(ψk|z)

Where on the second line we used the fact that integrand is symmetric under the choice of h.
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Lemma A.3. Let

ντ (ψ0:K+1 | z) = ωτ (ψ0:K | z)τ(ψK+1 | z)
1

K + 2

K+1∑
k=0

p(ψk | z)
τ(ψk | z)

Then ντ (ψ0:K+1 | z) is a normalized density.

Proof. ντ (ψ0:K+1 | z) is non-negative due to all the terms being non-negative. Now we’ll show it
integrates to 1 (colors denote corresponding terms):

∫
ωτ (ψ0:K | z)τ(ψK+1 | z)

1

K + 2

K+1∑
k=0

p(ψk | z)
τ(ψk | z)

dψ0:K+1

=
1

K + 2

∫
ωτ (ψ0:K | z)

[
K∑
k=0

p(ψk | z)
τ(ψk | z)

+

∫
τ(ψK+1 | z)

p(ψK+1 | z)
τ(ψK+1 | z)

dψK+1

]
dψ0:K

=
1

K + 2

∫ p(ψ0 | z)τ(ψ1:K | z)
1

K+1

∑K
k=0

p(ψk|z)
τ(ψk|z)

K∑
k=0

p(ψk | z)
τ(ψk | z)

dψ0:K + 1

 =
K + 1 + 1

K + 2
= 1

Theorem A.4.

log p(x) ≥ E

log 1

M

M∑
m=1

p(x | zm) 1
K−

∑K−
k=1

p(zm,ψ
ρ
m,k)

ρ−(ψρm,k|zm)

1
K++1

∑K+

k=0

q(zm,ψτm,k)

τ+(ψτm,k|zm)

 (6)

Proof. Consider a random variable

XM =
1

M

M∑
m=1

p(x | zm) 1
K−

∑K−
k=1

p(zm,ψ
ρ
m,k)

ρ−(ψρm,k|zm)

1
K++1

∑K+

k=0

q(zm,ψτm,k|x)
τ+(ψτm,k|zm,x)
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We’ll show it’s unbiased estimate of p(x) (colors denote corresponding terms):

EXM =

∫ [( M∏
m=1

q(ψτm,0 | x)q(zm | ψτm,0, x)τ+(ψτm,1:K+
| zm, x)ρ−(ψρm,1:K−

| zm)

)

1

M

M∑
m=1

p(x | zm) 1
K−

∑K−
k=1

p(zm,ψ
ρ
m,k)

ρ−(ψρm,k|zm)

1
K++1

∑K+

k=0

q(zm,ψτm,k|x)
τ+(ψτm,k|zm,x)

]
dψτ1:M,0:K+

dψρ1:M,1:K−
dz1:M

=

∫ [( M∏
m=1

q(ψτm,0 | x)q(zm | ψτm,0, x)τ+(ψτm,1:K+
| zm, x)

)

1

M

M∑
m=1

p(x | zm)Eρ−(ψρm,1:K−
|zm)

1
K−

∑K−
k=1

p(zm,ψ
ρ
m,k)

ρ−(ψρm,k|zm)

1
K++1

∑K+

k=0

q(zm,ψτm,k|x)
τ+(ψτm,k|zm,x)

]
dψτ1:M,0:K+

dz1:M

=

∫ [( M∏
m=1

q(ψτm,0 | x)q(zm | ψτm,0, x)τ+(ψτm,1:K+
| zm, x)

)
1

M

M∑
m=1

p(x | zm)p(zm)

1
K++1

∑K+

k=0

q(zm,ψτm,k|x)
τ+(ψτm,k|zm,x)

]
dψτ1:M,0:K+

dz1:M

=
1

M

M∑
m=1

∫
p(x, zm)

q(zm, ψ
τ
m,0 | x)τ+(ψτm,1:K+

| zm)

1
K++1

∑K+

k=0

q(zm,ψτm,k|x)
τ+(ψτm,k|zm,x)

dψτm,0:K+
dzm

=
1

M

M∑
m=1

∫
p(x, zm)ω(ψτm,0:K+

| zm, x)dψτm,0:K+
dzm =

1

M

M∑
m=1

∫
p(x, zm)dzm

= p(x)

Corollary A.4.1. All statements of Theorem 1 of Burda et al. [2015] apply to this bounds as well.
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