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Abstract

Flow-based models have recently received growing attention in the machine learn-
ing community. These models can fit to complex distributions, while also offering
exact density computation and efficient sampling. The recently proposed Glow
model successfully scaled up this approach to high-dimensional image data. Com-
plementing previous work, we show that a class of flow-based models, known as
real non-volume-preserving transformations (real NVP) can be trained efficiently
with constant memory cost. We build on ideas from the reversible residual network
(RevNet) to compute gradients for affine coupling layers using memory constant
with respect to model depth, at the cost of only one extra inverse computation.

1 Introduction

Normalizing flows (NFs) have been developed as a means of modeling complex probability dis-
tributions [13, 17, 19, 6, 12, 10, 22, 14]. A related development, RevNets [7] resemble a type of
volume-preserving flow known as non-linear independent component estimation (NICE) [5]. RevNets
exploit the reversibility of its layers to allow gradients to be computed with memory usage constant
with respect to model depth.

In this paper, we give a constant-memory-cost algorithm to compute gradients in real NVPs that
use affine coupling layers. Empirically, our gradient computation adds merely a 40% computational
overhead in most scenarios. We apply our method to the recently proposed Glow model [12]. On
HQ-CelebA images downsampled to 256x256, this enabled us to fit on a single GPU a batch size that
previously would require 40 GPUs even with the support of gradient checkpointing [20], providing
a solution to further scale up these models with fewer computational resources and realizing the
claimed memory saving potential [12].
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Figure 1: A general way to compute gradients for invertible transformations with constant memory
cost (Sec. 2.1) 1© first computes output y from input x, and then on the reverse pass 2© computes both
the inverse and 3© the forward pass a second time. Our proposed Algorithm 2 (Sec. 2.2) eliminates
the extra forward pass 3©.

2 Training Flow-Based Models with Constant Memory Cost

We first review a simple trick for computing gradients of general invertible transformations with
constant memory cost in Sec. 2.1. We then describe in Sec. 2.2 our algorithm tailored to affine
coupling layers, which has much less computational overhead.
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2.1 Training Invertible Transformations with Constant Memory Cost

Suppose the transformation we intend to learn can be written as a composition:

F (x) = fn ◦ fn−1 ◦ fn−2 ◦ · · · ◦ f1(x),

where f1, f2, . . . , fn are differentiable with parameters w1, w2, . . . , wn, respectively. By the chain
rule, the total derivative of F (x) with respect to parameters wi is:

dF (x)

dwi
=

dF (x)

dfi(x)

dfi(x)

dwi
.

In standard backpropagation, also known as reverse-mode automatic differentiation, we must store
the intermediate quantities in order to efficiently compute the gradient with respect to each function’s
parameters. However, when each of the constituent transformations are invertible, we can avoid
storing the intermediates, and instead reconstruct them by computing the inverse of each function.

In practice, however, this requires both an extra inverse as well as repeating the forward computation,
if reverse-mode automatic differentiation is used naïvely. Specifically, to compute the gradient with
respect to the input x given the output y and its gradient dF/dy, we first reconstruct x by inverting y,
then compute the forward to reconstruct a new y′. In the end, we call an API provided by most autodiff
frameworks to compute dy′/dx and dy′/dw. Algorithm 1 summarizes the idea in pseudocode.

Algorithm 1: Training General Invertible Transformations with Constant Memory
“compute_gradient” is the abstraction of an API supported in most automatic differentiation libraries.
Input: x, w1, . . . , wn

Output: dF (x)
dw1

, . . . , dF (x)
dwn

xn = F (x)
for i = n to 1 do

xi−1 = f−1i (xi)
y = fi(xi−1)
dF (x)
dxi−1

= compute_gradient(y, xi−1,
dF (x)
dxi

)
dF (x)
dwi

= compute_gradient(y, wi,
dF (x)
dxi

)

end
return dF (x)

dw1
, . . . , dF (x)

dwn

2.2 Training Affine Coupling Layers with Constant Memory

Although Algorithm 1 is in principle applicable to learning any type of invertible transformation,
the computational overhead of a backward plus extra forward pass may limit its usage in practice.
For instance, either the forward or inverse computation for autoregressive flows [17, 13] takes O(D)
time, where D is the number of variables. Nevertheless, for real NVP and Glow, the overhead can be
reduced by exploiting its architecture as in RevNet. One key ingredient of real NVP and Glow is the
affine coupling layer:

y1 = x1, y2 = x2 ◦ exp(F(x1)) + G(x1). (1)

F and G can be arbitrary differentiable functions which themselves might not be invertible. The
specific structure of this set of forward updates gives us a way to prune the extra forward computation
in the method from Sec. 2.1 by reusing F(x1) and G(x1) computed in the extra backward pass to
compute gradients of the loss with respect to parameters and input.

Additionally, the maximum likelihood objective in density estimation contains an extra log-
determinant term:

log p(x) = log p(y) + log|det J | = log p(y) +
∑
i

F(x1)i. (2)

Here, the term is a sum over F(x1)’s vector components, whose derivative with respect to itself is
a vector of ones. We simply add this to the partial derivate of log p(y) with respect to F(x1) when
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relaying the gradients backward. In practice, we compute the log-determinant term as the mean
across a batch of inputs, in which case we add to d log p(y)/dF(x1) a vector whose every component
is the reciprocal of the batch size.

Algorithm 2 summarizes the overall idea in pseudocode. A TensorFlow implementation of the
backward pass can be found in App. 7.1.

Algorithm 2: Training Real NVPs with Constant Memory.
To simplify notation, let m̄ = d log p(y)/dm and m̃ = d log p(x)/dm, where log p(x) and log p(y)
are in Eq. 2. WF andWG are parameters of F and G respectively.
Input: y1, y2, ȳ1, ȳ2
Output: x1, x2, x̃1, x̃1, W̃F , W̃G
G = G(y1)
F = F(y1)
x1 = y1
x2 = (y2 −G) ◦ exp (−F )

G̃ = ȳ2
F̃ = (x2 ◦ exp (F ))

>
ȳ2 + 1 (In practice add batch size reciprocal, instead of 1)

x̃1 = ȳ1 + (dG/dx1)
>
G̃ + (dF/dx1)

>
F̃

x̃2 = ȳ2
W̃G = (dG/dWG)

>
G̃

W̃F = (dF/dWF )
>
F̃

return x1, x2, x̄1, x̄2, W̄F ,W̄G

3 Related Work

Reversible Architectures The core architecture of RevNet can be interpreted as composing two
sets of NICE additive coupling layers. Computing gradients with only one extra inverse in that
setting was also derived [7]. Subsequent work improved on RevNet in terms of theoretical properties
and practical performance [11, 2]. More recent work applied the idea to build reversible recurrent
nets (revRNN) [15]. Our work complements these works in adapting the idea to non-volume-
preserving transformations and may be applied to revRNN to reduce the computational overhead,
which according to their experiments is 1-2x, hence a drawback of the approach.

Flow-based Models Flow-based models were first introduced as a method to learn flexible posterior
approximations for variational inference [19, 13]. Concurrently, similar models were proposed for
density estimation [5, 6, 12, 17]. Notably, flow-based models without function approximators
occurred early on in the mathematics literature [21].

The authors of the Glow paper suggest that flow-based density estimators offer great potentials in
memory saving at training time [12] without stating the specifics on how this would be realized
efficiently. In fact, their released implementation of the model relies on a variant of gradient
checkpointing [20, 16, 4, 9] which has similar computational overhead as our method. Yet, the
memory usage there is proportional to the square root of model depth, which made their larger models
trained on HQ-CelebA downsampled to 256× 256 to require 40 GPUs merely to fit mini-batches of
size 40.

Recent work has combined Glow with WaveNet [23], producing a simple model for fast and high-
quality audio synthesis [18]. The prevalent usage of affine coupling layers suggests that Algorithm 2
may be applied to these models potentially for large-batch training of deeper models.

Orthogonal to designing flow-based models ordered by discrete steps, an alternative line of work
focuses on flows that alter variables continuously and compute gradients with respect to variables
that define the gradient field of ordinary differential equations using the adjoint method [3, 8].
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4 Experiments

4.1 Memory Usage and Computational Overhead

We validate the memory saving and computational overhead of Algorithm 2. On a single Nvidia
TITAN Xp, we train a 3 level Glow model [12] varying the number of flows per level on a batch of
eight synthetic 256× 256× 3 examples. We see that Algorithm 2 has an overhead of <0.4x, whereas
the overhead for Algorithm 1 is roughly 1.3x. Profiling details can be found in App. 7.2.

Being able to train flow-based models with constant memory allows us to fit larger mini-batches
during training. However, the more direct benefit is that we can fit larger and deeper models with
fewer GPUs. For instance, the 6 level, 32 flows/level Glow model that produced state-of-the-art
qualitative results on HQ-CelebA downsampled to 256× 256 required 40 GPUs with per-PU batch
size 1. Using our approach, we are able to fit the same batch on a single Nvidia TITAN Xp, despite
being prohibitively slow.

Figure 2: Comparison between usual backpropagation, Algorithm 1 (naive rev), and Algorithm 2
(optimized rev). Left: Memory. Right: Computational overhead.

4.2 Density Estimation and the Effect of Numerical Loss

As described in [7, 15], we expect gradients computed by Algorithm 2 to be numerically different
than that computed by usual reverse-mode automatic differentiation due to limited floating point
precision. To verify that performance does not degrade, we train Glow models both with the usual
gradients and those computed by Algorithm 2 using single precision floats. From Tab. 1, we do not
observe noticeable differences in final log-likelihood results. Training details are in App. 7.3.

POWER GAS HEPMASS MINIBOONE BSDS300 MNIST CIFAR
Usual -0.22 -8.27 18.13 12.76 -154.74 1.05 3.35
Reversible -0.23 -8.25 18.03 12.62 -154.83 1.05 3.34

Table 1: Comparison using negative log-likehood on test data between usual backprop (Usual) and
Algorithm 2 (Reversible). Numbers are in nats for tabular data and bits/dim for MNIST and CIFAR.
The datasets POWER, GAS, HEPMASS, MINIBOONE, and BSDS300 are from [17].

5 Discussions

By extending the gradient computation of RevNet to affine coupling layers, we completed the picture
of how one would train real NVPs with constant memory and low overhead. Memory usually becomes
the bottleneck with deeper flow-based models trained on higher dimensional data, e.g. the larger
Glow model with 6× 32 flows trained on HQ-CelebA originally required 40 GPUs’ mainly due to the
memory cost. We believe our work could benefit future work on further scaling up flow-based models.
We also plan to adapt Algorithm 2 to recent works such as the reversible recurrent network [15] to
reduce the computational overhead.
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7 Appendix

7.1 Sample Implementation in TensorFlow

def backward_grads(y1, y2, dy1, dy2):
x1, dx1 = y1, dy1
gx1 = g(x1)
ggrads = tf.gradients(gx1, [x1] + g.variables, grad_ys=dy2)
dx1 += ggrads[0]
dg = ggrads[1:]
fx1 = f(x1)
expfx1 = tf.exp(fx1)
x2 = (y2 - gx1) / expfx1
fgrads = tf.gradients(

fx1, [x1] + f.variables,
grad_ys=dy2 * x2 * expfx1 + 1. / float(y1.shape.as_list()[0]))

dx1 += fgrads[0]
dx2 = dy2 * expfx1
df = fgrads[1:]
dw = df + dg

with tf.control_dependencies(dw): # Enforce sequential computation
x1 = tf.identity(x1)

return x1, x2, dx1, dx2, dw

TensorFlow implementation of the gradient computation in Algorithm 2

7.2 Profiling Details

Since all of our models were implemented with TensorFlow [1], memory usage statistics were
collected based on the metadata gathered from “session.run”. In particular, we also used a custom
wrapper 1 that facilitated organizing and interpreting the metadata. Profiling results for the computa-
tional overhead was performed with 3 warmup iterations before the 100 iterations of gradient update
to reduce the affect of TF’s slow initial setup.

7.3 Training Details

Architectural Decisions For experiments on CIFAR in Tab. 1, we follow the exact architecture
use in [12]. For experiments on MNIST, we follow the architecture adopted in [8], and use a 2 level

1https://github.com/yaroslavvb/memory_util
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model with 32 flows per block. For experiments on UCI datasets, we follow the exact architecture
in [8], removing the ActNorm layers and replacing invertible convolutions with invertible dense
layers. For experiments using invertible convolutions, we follow [12] and initialize the filter of the
convolution as an orthogonal matrix. For experiments using invertible dense layers, we follow [8]
and initialize the matrix to be the identity. In both cases, we did not explicitly enforce the matrix to be
invertible throughout training, following [12, 8]. The matrix inverse and determinant are computed
by “tf.matrix_inverse” and “tf.matrix_determinant”, respectively.

Training and Testing Hyperparameters For experiments on CIFAR in Tab. 1, we follow the
exact set of hyperparameters selected in [12], with the exception that we train on 4 GPUs instead of 8.
For experiments on MNSIT and UCI datasets in Tab. 1, we follow the exact set of hyperparameters
selected in [8].

Backward pass with constant memory Recall that the Glow model consists of a sequence of
flows in a multi-scale architecture, where each flow is composed of an affine coupling layer, an
invertible convolution, and an Activation Normalization (ActNorm) layer. The results for “optimized
rev” in Fig. 2 used a Glow model, whose invertible convolution and ActNorm layer are implemented
according to Algorithm 1, but whose affine coupling layer being implemented according to Algo-
rithm 2. We also implemented a version of invertible convolution and ActNorm layer that avoided the
repeated forward computation in the backward pass, but did not observe any significant improvements
in speed. For experiments in Tab. 1, we also use the described implementation for constant memory
backward pass.
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