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1 Introduction

Exchangeability is often an implicit assumption underlying many machine learning algorithms. It
implies that any re-ordering of a finite sequence of observations is equally likely. Thus, it allows to
reason about the future observations based on the behaviour of the previous ones. Some problems
can be explicitly formulated in terms of modelling exchangeable sequences. For instance, few-shot
concept learning can be seen as learning to complete short exchangeable sequences [13]]. BRUNO [[12]]
follows this approach by modelling autoregressive distributions p(z,|z1.,—1) of an exchangeable
process. In this work, we extend the idea of BRUNO to the conditional case, where we wish to model
p(Zn|hn, T1:m—1, h1.n—1) With h;’s being labels or tags associated with images z;’s.

Formally, a stochastic process x1, 22, x3, . .. is said to be exchangeable if for all n and all permuta-
tions 7

p('rlv"'vxn) :p(ITr(l)7"'7I7T(TL))7 (1)
i. e. the joint probability remains the same under any permutation of the sequence.

The concept of exchangeability is intimately related to Bayesian statistics via de Finetti’s theorem,
which states that every exchangeable process is a mixture of i.i. d. processes:
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where 6 is a parameter (finite or infinite-dimensional) conditioned on which, x;’s are i. i. d. [1].

This theorem gives two ways of defining models of exchangeable sequences. One is via explicit
Bayesian modelling: define a prior p(6), a likelihood p(x;|#) and calculate the posterior in Eq.
directly. Here, the difficulty is the intractability of the posterior as it requires an integration over the
parameter €. A common solution is to use a variational approximation. The neural statistician [3]
implements this approach by building upon a variational autoencoder model (VAE) [[L1].

The second way is to construct an exchangeable process while modelling its autoregressive distri-
butions p(z,,|x1.,—1) directly without referring to the underlying Bayesian model. BRUNO [12]]
proposes a design for doing so. It consists of two components: (a) a bijective mapping that transforms
an intricate input space & into a Gaussian latent space Z, and (b) exchangeable Gaussian processes
(GPs) defined in the latent space Z. Using deep neural networks to implement the bijection allows to
model complex and high-dimensional inputs, while the whole construction of BRUNO guarantees
that the process in X" is exchangeable.

A natural extension when building exchangeable models would be to have a conditional process with
two associated sequences: x1,Z2,Zs3,... and hy, hs, hs,.... For instance, x; could be an image
and h; a vector of descriptive labels or tags. By analogy with Eq.[I} the exchangeability property
becomes:

p($17~-~7$n|h17- ahn) :p(xﬂ(l)a-"7*/L'7r(n)‘h7r(1)7'-'7h7r(n)) . (3)
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To have a valid stochastic process, we also need a consistency property as imposed by the Kolmogorov
extension theorem [|14]:

p(x1:m|hl:m) = /p (x1:n|h1:n) dmm—i—l:n for 1 S m <n. (4)

To our best knowledge, Bayesian theory does not have an established proof of de Finetti’s theorem
for conditional probabilities. Namely, that the two conditions above ensure that one can represent the
process as a mixture of conditionally i.i.d. models as given in Eq.[5] For the processes where x; and
h; take values from a finite set, this theorem is proven in the field of quantum physics [2]. However,
it is yet unclear how to extend their results to continuum variables.
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Relying on the conditional version of de Finetti’s theorem, neural processes [7] take an approach
that is similar to the neural statistician’s. Namely, by extending the VAE model to handle collections
of (x;, h;) input pairs and dealing with a lower bound on p(z, |y, ©1.n—1, h1.n—1). Versa [8] also
follows the idea of approximating the posterior predictive distribution, though it uses a training
procedure that differs from the standard variational inference. Both models achieve permutation
invariance of p(6|z1.,, h1.n,) With respect to the conditioning inputs by using instance-pooling
operations, e.g. the mean over representations of (z;, h;) pairs.

Another option is to use the idea of BRUNO and construct a process that satisfies Eq. [3[ and
In the next section, we show this can be done by modifying the architecture of BRUNO. Namely,
by conditioning the bijective transformation f : X — Z on the tags, such that z; = f,(z;). A
schematic of our model is given in Fig.[T} While the change to the model is incremental, the fact that
BRUNO can be so easily extended to the conditional case is interesting by itself. Moreover, it adds
an important class into the collection of meta-learning problems that BRUNO is capable of solving.
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Figure 1: A schematic of the conditional BRUNO model.

2 Conditional BRUNO

The bijective transformation part of BRUNO is carried out by a Real NVP [4] — a deep, stably
invertible and learnable neural network architecture that transforms some density p(a) into a desired
probability distribution p(z). It is implemented as a sequence of alternating coupling layers, with
every layer transforming a half of its input dimensions while copying the other half directly to the
output. In case of modelling a conditional distribution p(x|h), we can make the transformation
dependendent on h, so the outputs of the coupling layer become:

ml:d — x_l:d
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where © is an elementwise product, and functions s (scale) and ¢ (translation) are usually deep neural
networks. We achieved the conditioning on h by adding a bias computed from the features of h to
every layer inside the s and ¢ networks.

As in case of the original Real NVP model, we can assume a fixed distribution for the latents z
due to the fact that dependence of « on h is introduced via the Jacobian of the transformation. The



latter is used in the change of variables formula: p(x|h) = p(z) |det Jy| . For the same reasons, the
conditional BRUNO can use the identical assumptions as its unconditional counterpart:

A1: dimensions {z%}4—1 . p are independent, so p(z) = Hle p(z%)

A2: for every dimension d, we assume that (z¢,...2%) ~ MV N, (0,2%), where ¢ isan x n

covariance matrix with 3¢, = v* and B¢, - = p?, 0 < p? < v?.

3 Experiments

We consider a task of few-shot image reconstruction, where the model is required to infer how
an object looks from various angles based on a small set of observed views [8]. In our model,
this problem can be framed as generating samples from a predictive conditional distribution
p(n|hn, 1.n—1, R1.n—1), Where h,, is a desired angle and x;.,_1 is a set of observed views
associated with angles hy.,,_1. We use airplanes and chairs from the ShapeNetCore v2 [3]] dataset as
constructed by Gordon et al. [8]], and train the conditional BRUNO on one-shot tasks. We give a single
random view 1 and its angle h, and the goal is to predict NV views of the same object under angles
hy,..., hy. Namely, the objective in a single task is to maximise £ = 25:1 log p(y |y, @1, hy)
with respect to the Real NVP parameters and variance-covariance parameters of the latent GPs. Note,
that unlike in Gordon et al. [8]], we train a single model on a combined set of chairs and airplanes.

In Figure 2] we show samples from a conditional BRUNO when the model was given a single
viewpoint from an object not seen during training. Note that conditioned on a chair, it never samples
an airplane or vice versa. Moreover, from Figure [3one can see better how the model’s uncertainty
about the object is reflected in the samples. Specifically, in the case when a single shot it is conditioned
upon gives insufficient information about the object, conditional BRUNO generates diverse objects
which are quite consistent with the given shot. Also, our samples always have a correct orientation
and their quality is superior to the one from Versa [8]] as our samples are sharp.
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Figure 2: One-shot BRUNO samples for the unseen test objects. Here, the model is given a single
view (21, h) of a chair or an airplane. This input shot is marked in red. On the top row is the ground
truth, whereas the three rows underneath contain samples from the model conditioned on the input
shot and a desired angle.
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Figure 3: BRUNO samples for the test objects conditioned on 1 or 4 shots and an angle. From a
single shot, it is difficult to infer the exact appearance, e.g. the front of the chair or the aiplane type.
Thus, the model increases the variability of the samples along these dimensions. With more input
shots, samples become more consistent. This is most noticeable for the shape of the airplane’s wings.

A more complex version of the few-shot image reconstruction, is learning to render scenes as done by
Generative Query Networks [6], which are similar to the aforementioned neural processes [7]] in their



core idea. We suppose that conditional BRUNO, when scaled to complex datasets, might become a
viable alternative to the VAE-based types of models.

4 Conclusion

We showed that BRUNO [12] can be easily extended to the conditional case while maintaining its
appealing properties such as provable exchangeability, exact posterior computation, fast sampling
and recurrent formulation of the Bayesian updates. These features make BRUNO a simple yet an
effective and flexible model for meta-learning.

BRUNO combines the data-efficiency of GPs with a power of deep learning to model complex data
types, and while the former is unlikely to be improved, we expect BRUNO to greatly benefit from the
recent advances in building normalising flows, which is currently an active area of research [9,[10].
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