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1 Introduction

In this work, we propose a method for learning dependency structures in latent variable models. We
discuss a variational end-to-end approach for learning arbitrary directed graph structures introducing
minimal complexity overhead. In particular, we introduce a set of binary global variables to gate
the latent dependencies. The whole model (including its structure) is jointly optimized with a single
stochastic variational inference objective. In our experimental validation, we show that the learned
dependency structures contribute to a more accurate representation of the true generative distribution,
outperforming several other variants of variational autoencoders.

Variational autoencoders (VAESs) [ R ] amortize inference
optimization in latent variable models across data examples X and latent variables z by parameterlzmg

q4(z|x) as a separate inference model, then jointly optimizing the model parameters 6 and ¢ using
evidence lower bound: £(x;0,$) = Eq, (/x) [log pe(x|2z)] — KL(qg4(2|x)||ps(z)). However, VAEs
are typically implemented with basic graphical structures and simple, unimodal distributions (e.g.
Gaussians). Similarly, approximate posteriors often make the mean field assumption, g, (z|x) =
[L,,, 46 (2m|x). Independence assumptions such as these may be overly restrictive, thereby limiting
modeling capabilities.

Incorporating dependency structure among the latent variables is one way to improve expressive-
ness [ , ]. These dependencies provide
empirical priors, learned prlors that are condltloned on other latent variables. With M latent dimen-
sions, the full prior takes the following auto-regressive form: pg(z) = H% 1 Po(2m |z a(m)) where
Zpa(m) denotes the vector of latent variables constituting the parents of z,,. The margmal empirical

prior of such models, pg(2m) = | Po(2m|Zpa(m))Po(Zpa(m))dZpa(m). can be arbitrarily complex.

Rather than relying on pre-defined fully-connected structures or chain structures [ ,
] in previous works, we seek to automatically learn the latent dependency structure as part of the
variational optimization process. A comparison of these approaches is visualized in Fig. 1.

2 Variational Optimization of Latent Structures

Given a fixed number of latent dimensions, a finite number of possible dependency structures exists
and can be modelled with a fully-connected directed acyclic graph (DAG). Naively, one might assume
that a fully-connected DAG is the most general structure, and, therefore, current models should
implicitly learn to ignore unnecessary dependencies between latent variables. However, latent variable
models are highly prone to local optima, and as we show empirically in experiments, modifying
entire dependencies can yield improved performance.
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Figure 1: Overview: Model Comparison. We show the graphical representations of (a) traditional
latent variable models (VAE, ladder VAE) and (b) the proposed graph VAE. Solid lines denote
generation, dashed lines denote inference, and the dotted area indicates the latent space governed
by variational parameters ¢ and generative parameters 6. Both VAE and ladder VAE use a fixed
graph structure with limited expressiveness (VAE: independent; ladder VAE: chain-structured). In
contrast, graph VAE jointly optimizes a distribution over latent structures ¢ and model parameters (¢,
), allowing test-time sampling of a flexible, data-driven latent structure.

To control the dependency structure of the model, we introduce a set of binary global variables,
¢ = {¢; ;}i,;» which gate the latent dependencies. The element ¢; ; denotes the gate variable from
z; to z; (¢ > j), specifying the presence or absence of this latent dependency. We treat each
¢i,; as an independent random variable, sampled from a Bernoulli distribution with mean ; ;, i.e.
¢i; ~ B(ui ;). We denote the set of these Bernoulli means as ;. With this addition, the model
is now expressed as py(X,z,c) = po(x|z, c)py(z|c)p(c), and the prior can now be expressed as
pe(zlc) = Hf:/:l po(zn, \Zpa(n), Cpa(n),n)’ where Cpa(n),» denotes the gate variables associated with
the dependencies between node z,, and its parents, zpa(). Note that zpa(,,) denotes the set of all
possible parents of node z,, in the fully-connected DAG, i.e. Zpa(n) = {Zn+1,---,2N}-

Introducing the dependency gating variables modifies the variational objective, as we must now
marginalize over these additional variables. The corresponding lower bound can thus be expressed as

L = Ey(c) [Eq, (sx) [l0g po(x]2, )] — KL(qy(z|x)|lpo (z[c))] = Epe) [Le], (1

where L, is the ELBO for a given value of dependency gating variables, c. Thus, L can be interpreted
as the expected ELBO under the distribution of dependency structures induced by p(c). We form a

Monte Carlo estimate of £ by sampling ¢ ~ p(c) and evaluating L.

For a given latent dependency structure, gradients for the parameters 6 and ¢ can be estimated using
Monte Carlo samples and the reparameterization trick. To obtain gradients for the gate means, ,
we make use of recent advances | s ] in differentiating through discrete operations,

allowing us to differentiate through the sampling of the dependency gating variables, c. Specifically,
we recast the gating variables using the Gumbel-Softmax estimator, re-expressing c; ; as:

o exp((log(pij) + €1)/7)
" exp((log(pig) + e1)/7) + exp((log(1 — pi) + €2)/7)
where €; and ey are i.i.d samples drawn from a Gumbel(0, 1) distribution and 7 is a temperature
parameter. The Gumbel-Softmax distribution is differentiable for 7 > 0, allowing us to estimate the

Y
derivative 7L
Hi,j
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3 Experiments

We evaluate the proposed model and its learned latent dependency structure on three challenging
datasets: MNIST [ s ], Omniglot [ . ], and CIFAR-10 [ R



Method

Dataset MNIST Omniglot CIFAR-10

LL KL  ELBO LL KL ELBO LL KL ELBO
VAE -89.1 290 -92.1 —-1109 305 —1204 —-6.63 0.110 —6.69
Ladder VAE —84.8 24.3 —-87.8 —-1064 279 -—-112.5 —6.47 0.082 —6.50
FC VAE —-83.0 289 —84.8 —-104.8 299 -—-106.6 —6.44 0.077 —6.46
Graph VAE —-82.1 278 —-84.1 -1034 29.1 -1052 -6.40 0.074 -641

Table 1: Quantitative Analysis. We show test-time log-likelihoods (LL), Dky.(qs(2|x)||pe(2))
(KL), and ELBO of the proposed graph VAE model (last row) and compare it to baselines on 3
popular datasets.

(a) (b)

Figure 2: Structure Learning. In (a), we show training Figure 3: Ablation Study on MNIST.
of the Bernoulli parameters p; ; governing the distribution For a fixed latent dimension M (color-
over graph structures in architecture space. All edges are coded), we report the log-likelihood of
color-coded and can be located in (b), where we show a all possible factorizations of node di-
random sample from the resulting steady-state distribution mension N’ (z-axis) and number of
with the same color scheme. nodes N = M/N’.

]. Our baselines consist of classic variational autoencoders as well as its popular variants,
including ladder VAEs and VAEs with fully-connected latent dependency structure (FC-VAEs).

An example of the structure learning process on MNIST is visualized in Fig. 2. In Fig. 2a, we show
the evolution of the parameters 4 of the gating variables c. The network actively drops 3/10 edges
during the learning process, while the remaining parameters eventually converge to 1. A sample of
the learned distribution is shown in Fig. 2b. Fig. 3 reports an ablation study on the influence of the
total latent dimension M and, for fixed latent dimension, the trade-off between number of nodes N
and node dimension N’ = M/N.

We evaluate the performance of all models using their test-time log-likelihood log py(x) (Table 1).
All values were estimated using 5, 000 importance-weighted samples. Following standard practice,
we report log pp(x) in nats on MNIST/Omniglot and in bits/input dimension on CIFAR-10. Our
proposed model with a jointly optimized, learned dependency structure consistently outperforms both
models with less expressive (VAE, ladder VAE) and more expressive (FC-VAE) predefined structures.
To provide further insights into the training objective, Table 1 also reports Dy (g4 (2[x)||pe(z)) and
the full ELBO objective (Eq. (1)) of the trained models.

4 Conclusion

We presented a novel method for optimizing variational autoencoders jointly with their latent depen-
dency structures. Our experiments showed that the learned latent dependency structure improves
the generative performance of latent variable models. By introducing an additional set of binary
structure indicator variables and optimizing a structure-dependent evidence lower bound, our model
is able to learn a better representation of the underlying generative distribution than baselines with a
predetermined structure.
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